

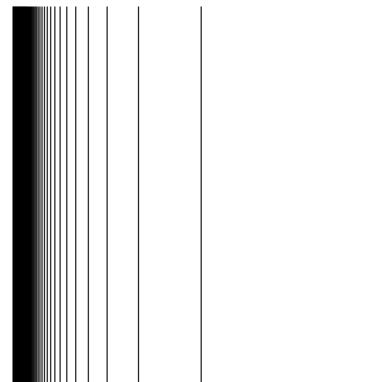
Problem 1. A topological space X is called “locally path connected” if every point in it has arbitrarily small neighborhoods that are path connected. Namely, if $x \in X$ and if U is a neighborhood of x , then there is a path connected open set V such that $x \in V \subset U$.

On the subject of liftings: Prove that if X is path connected, locally path connected, and simply connected, and if $p: (E, e_0) \rightarrow (B, b_0)$ be a covering map, then every $f: (X, x_0) \rightarrow (B, b_0)$ has a unique lift to a map $\tilde{f}: (X, x_0) \rightarrow (E, e_0)$ such that $\tilde{f}/p = f$.

Hint. Lift paths, lift endpoints of paths, worry about well-definedness, worry about continuity.

On the right. A space that is path-connected but not locally path-connected.

```
Graphics[{{Line[{{1, 0}, {0, 0}, {0, 1}}]},  
Table[Line[{{1/n, 0}, {1/n, 1}}], {n, 1000}]]
```



Problem 2. With the obvious assumptions and definitions, prove that $\pi_1((X, x_0) \times (Y, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Problem 3. Prove that if $\gamma: S^1 \rightarrow S^1$ is even (meaning, $\forall z \in S^1 \gamma(-z) = \gamma(z)$) then $[\gamma]$, an integer, is even. Likewise, prove that if $\gamma: S^1 \rightarrow S^1$ is odd (meaning, $\forall z \in S^1 \gamma(-z) = -\gamma(z)$) then $[\gamma]$ is odd.

Hint. Re-interpret γ as a map with domain $[0, 1]$ with some symmetry property. In both cases, γ is determined by its values on $[0, \frac{1}{2}]$, and if the lift $\bar{\gamma}$ of $\gamma|_{[0, \frac{1}{2}]}$ is known then the full lift $\tilde{\gamma}$ of $\gamma|_{[0, 1]}$ is determined by it. What can you say about $\bar{\gamma}(\frac{1}{2})$? What does it say about $\tilde{\gamma}(1)$?

Problem 4. Let M denote the Möbius band.

1. Show that $\pi_1(M) \cong \mathbb{Z}$.
2. Is there a retraction from M to its boundary?

