



**Problem 1.** Write explicit formulas for the homotopy in <https://drorbn.net/bbs/show?shot=26-1301-260105-110227.jpg> between  $e$  and  $\gamma\bar{\gamma}$  (and if that picture is wrong, fix it in your mind first). Your solution should take up 3 lines and must be of the form:

$$h(t, s) = \begin{cases} \text{formula 1} & \text{condition 1} \\ \text{formula 2} & \text{condition 2} \\ \text{formula 3} & \text{condition 3} \end{cases}$$

**Problem 2.** Prove the theorem which is implicit in the definition at <https://drorbn.net/bbs/show?shot=26-1301-260106-163930.jpg> and <https://drorbn.net/bbs/show?shot=26-1301-260106-163954.jpg>. Namely, prove that if  $X$  is path-connected then the following are equivalent:

1.  $\pi_1(X, x_0) = 0$  for some/any  $x_0 \in X$ .
2. If  $\gamma_0$  and  $\gamma_1$  are not-necessarily-closed paths that share their endpoints, namely  $\gamma_0(0) = \gamma_1(0) = x$  and  $\gamma_0(1) = \gamma_1(1) = y$ , then they are homotopic via a homotopy that does not move these endpoints.
3. Any two maps  $S^1 \rightarrow X$  are homotopic.

**Problem 3.** If  $X$  is path-connected, prove that the set of homotopy classes of maps  $S^1 \rightarrow X$  can be put in a bijection with the set of conjugacy classes in the fundamental group of  $X$ .