

MAT347 TUTORIAL

- (1) **T/F**: If $(R_1, +_1, \times_1)$ and $(R_2, +_2, \times_2)$ are rings and $f: (R_1, +_1) \rightarrow (R_2, +_2)$ is group homomorphism then f is a ring homomorphism.
- (2) **T/F**: If $(R_1, +_1, \times_1)$ and $(R_2, +_2, \times_2)$ are rngs and $f: (R_1, +_1) \rightarrow (R_2, +_2)$ is group homomorphism then f is a rng homomorphism.
- (3) **T/F**: If $(R_1, +_1, \times_1)$ and $(R_2, +_2, \times_2)$ are rings and $f: (R_1, +_1) \rightarrow (R_2, +_2)$ is group isomorphism then f is a ring isomorphism.
- (4) **T/F**: If $(R_1, +_1, \times_1)$ and $(R_2, +_2, \times_2)$ are rngs and $f: (R_1, +_1) \rightarrow (R_2, +_2)$ is group isomorphism then f is a rng isomorphism.
- (5) **T/F** If $f: (\mathbb{R}, +) \rightarrow (\mathbb{R}, +)$ is a group homomorphism then f is a ring homomorphism.
- (6) **T/F** If $I \subset R$ is an ideal then $(I, +) \triangleleft (R, +)$.
- (7) **T/F** If \mathbb{F} is a field and $I \subset \mathbb{F}$ is an ideal then $I = 0$.
- (8) **T/F** If \mathbb{F} is a field, $R = M_2(\mathbb{F})$ (2×2 matrices with entries in \mathbb{F}) and $I \subset R$ is an ideal then $I = 0$.
- (9) **T/F** There exists a ring homomorphism $M_2(\mathbb{R}) \rightarrow \mathbb{R}$.
- (10) **T/F** If $f: R_1 \rightarrow R_2$ is a ring homomorphism and $I \subset R_1$ is an ideal then $f(I)$ is an ideal.

If R is a ring the **characteristic** of R , denoted $\text{Char}(R)$, is the smallest integer n such that $\sum_{i=1}^n 1 = 0$. If no such integer exists then we define $\text{Char}(R) = 0$.

- (11) **T/F** If R is an integral domain then $\text{Char}(R) = 0$ or $\text{Char}(R) = |R|$.
- (12) **T/F** If R is a field then $\text{Char}(R)$ is prime.
- (13) **T/F** If R is an integral domain and $\text{Char}(R)$ is prime then $|R| = \text{Char}(R)$.
- (14) **T/F** If R is an integral domain and $\text{Char}(R)$ is prime then R is a field.
- (15) **T/F** If R is an integral domain and $\text{Char}(R)$ is prime then R is a field.
- (16) **T/F** If R is a finite field then $\text{Char}(R)$ is prime.
- (17) **T/F** If $\text{Char}(R)$ is prime then R is a finite field.