

MAT347 TUTORIAL

- (1) Prove or disprove: If R is an integral domain with ideals $I, J \trianglelefteq R$, if $R/I \cong R/J$ as R -modules then $I = J$.
- (2) Let R be a commutative ring and let M be an R -module. Show that $M \cong R/I$ as R -modules for some maximal ideal $I \trianglelefteq R$ if and only if the only submodules of M are 0 and M (such modules are called *simple*).
- (3) Prove that there exists an integral domain R and a torsion R -module M such that $\text{Ann}_R(M) = 0$ where:

$$\text{Ann}_R(M) = \{r \in R : rm = 0 \text{ for all } m \in M\}$$

and (c.f. homework 11) a module is called **torsion** if for all $m \in M$ there exists $r \in R$ such that $rm = 0$.

(Hint: first decide if M can be finitely generated).

- (4) Let M be an abelian group such that $M \cong \mathbb{Z}^n$ for some $n \geq 1$ (as abelian groups) and suppose there exists a group homomorphism $f: M \rightarrow M$ such that $f \circ f = -\text{Id}$.
 - (a) Show that M can be given the structure of a $\mathbb{Z}[i]$ module by the formula $(a + bi) \cdot m = am + bf(m)$.
 - (b) Show that:

$$M \cong \bigoplus_{i=1}^k \mathbb{Z}[i]$$

for some k and deduce that n is even.

- (c) Prove that there exists a basis $\{e_1, \dots, e_n\}$ for M as a \mathbb{Z} -module such that for all $1 \leq j \leq n$ we have $f(e_{2j-1}) = e_{2j}$ and $f(e_{2j}) = -e_{2j-1}$.
- (d) If $g: M \rightarrow M$ is another group homomorphism satisfying $g \circ g = -\text{Id}$ prove that there exists a group isomorphism $\phi: M \rightarrow M$ such that $\phi \circ f = g \circ \phi$.
- (5) True or false: there exists a ring R such that $R \cong R \oplus R$ as left R -modules. (Hint: can R be commutative?)