

This is a preview of what students will see when they are submitting the assignment. Interactive features are disabled.

Homework Assignment 12

Solve and submit your solutions of the following problems. Note also that the late policy is very strict - you will lose 5% for each hour that you are late. In other words, please submit on time!

Due date

Friday, January 30, 2026 11:59 pm (Eastern Standard Time)

Late penalty

5% deducted per hour

Q1 (10 points)

Find the tensor product of the $\mathbb{C}[t]$ modules $\mathbb{C}[t, t^{-1}]$ ("Laurent polynomials in t ") and \mathbb{C} (here t acts on \mathbb{C} as 0).

Q2 (10 points)

Show that over any ring R , the tensor product of the R -module $R[x]$ with itself is the R -module $R[x, y]$.

Q3 (10 points)

Let V and W be finite dimensional vector spaces over a field F , and let $\text{Hom}(V, W)$ denote the vector space of all linear transformations $V \rightarrow W$.

- Show that $\text{Hom}(V, W)$ is isomorphic to $V^* \otimes W$ via a *natural* isomorphism. (The phrase *natural* has a formal definition within category theory, but stating it will take us too far away. So let's say that I just mean, "an isomorphism that does not depend on making any choices, such as a basis for V or for W).
- The assumptions in this question can be relaxed a bit, and one V and W can be allowed to be infinite dimensional. Which of them is it?

Q4 (10 points)

Let V be a finite dimensional vector space over a field F . There is an obvious bilinear map $e : V^* \times V \rightarrow F$, defined by $(\varphi, v) \mapsto \varphi(v)$. The functional definition of tensor products implies that there is a unique linear map $t : V^* \otimes V \rightarrow F$ such that $t \circ \iota = e$, where ι is the standard map $V^* \times V \rightarrow V^* \otimes V$. In the light of the previous question, t can be interpreted as a linear map $t : \text{Hom}(V, V) \rightarrow F$. Can you identify t as one of the well-known standard linear algebra operations? Which one? Why?

Ready to submit?

- Please ensure all pages are in order and rotated correctly before you submit
- You will not be able to resubmit your work after the due date has passed.

 Please wait...