Homework Assignment 7

Solve and submit your solutions of the following problems. Note also that the late policy is very strict - you will lose 5% for each hour that you are late. In other words, please submit on time!

Due date

Friday, November 14, 2025 11:59 pm (Eastern Standard Time)

Late penalty

5% deducted per hour

Q1 (10 points)

Let N and H be groups, and let $\phi: H \to \operatorname{Aut}(N)$ and $\psi \in \operatorname{Aut}(H)$ be given, and let $\phi' := \phi \circ \psi$. Show that $N \rtimes_{\phi'} H$ is isomorphic to $N \rtimes_{\phi} H$.

Note. " $\psi \in \operatorname{Aut}(H)$ " is correct.

Q2 (10 points)

Let $N = \langle x \rangle / \langle x^7 \rangle$ and let $H = \langle y \rangle / \langle y^3 \rangle$, and let $\phi_1 : H \to \operatorname{Aut}(N)$ be given by $\phi_{1y}(x) = x^2$ and $\phi_2 : H \to \operatorname{Aut}(N)$ be given by $\phi_{2y}(x) = x^4$. Show that the groups $N \rtimes_{\phi_i} H$ for i = 1, 2 are isomorphic.

Q3 (10 points)

Let N, A, and B be groups, and let $H:=A\times B$. Suppose $\psi:A\to \operatorname{Aut}(N)$ is given, and let $\phi:=\psi\circ\pi_A$ where $\pi_A:A\times B\to A$ is the projection on the first factor. Show that $N\rtimes_\phi H$ is isomorphic to $(N\rtimes_\psi A)\times B$.

Note. An earlier version of this question had " $\psi:A\to \operatorname{Aut}(H)$ ". The correct version is as it is now, " $\psi:A\to \operatorname{Aut}(N)$ ".

Q4 (10 points)

Show that up to isomorphism and other then the direct product, there is only one group of the form $\mathbb{Z}/3 \rtimes (\mathbb{Z}/2 \times \mathbb{Z}/2)$.

Ready to submit?

- → Please ensure all pages are in order and rotated correctly before you submit
- You will not be able to resubmit your work after the due date has passed.

