

Selick.

1. **Thm 3.1.1.** The gcd in an extension field is the same as in the base field.
2. **Thm 3.1.4.** Eisenstein's Criterion). R a UFD, $p \in R$ a prime, $f = \sum_0^n a_i x^i$ with $p \mid a_0, p \mid a_1, \dots, p \mid a_{n-1}, p \nmid a_n$. Then f is irreducible in $Q(R)[x]$.
3. **Prop 3.2.2.** $[L : F] = [L : K][K : F]$.
4. **Lem 3.2.8.** The minimal polynomial is irreducible.
5. **Lem 3.2.9.** If a is algebraic over F , then $[F(a) : F]$ is the degree of the minimal polynomial of a .
6. **Lem 3.2.10.** Also, $F(a) = F[a]$.
7. **Cor 3.2.11.** Also, $F(a) \cong F[x]/(\text{min. poly. of } a)$.
8. **Thm 3.2.12.** The set of algebraic elements over F is a field.
9. **Cor 3.2.13.** If $L/K/F$ and K/F and L/K are algebraic, then so is L/F .
10. **Def 3.3.9.** A splitting field.
11. **Thm 3.3.13.** If E/F , E'/F' , $\tau: F \rightarrow F'$ a morphism, $p \in F[x]$ irreducible, $p' = \tau p$, a, a' roots of p , p' in E, E' , then there is an extension $\tilde{\tau}: E \rightarrow E'$ of τ such that $\tilde{\tau}(a) = a'$. ("all roots of an irreducible polynomial are the same").
12. **Thm 3.3.15.** If $\tau: F \rightarrow F'$ an isomorphism, $p \in F[x]$ irreducible, $p' = \tau p$, E is a splitting field of p and E' is a splitting field of p' , then there is an extension of τ to an isomorphism $\tilde{\tau}: E \rightarrow E'$.
13. **Thm 3.4.1.** Frobenius: If $\text{char } F = p$ then $(a + b)^p = a^p + b^p$ and more generally, $(a + b)^{p^k} = a^{p^k} + b^{p^k}$.
14. **Thm 3.5.1.** f has repeated roots iff $\gcd(f, f') \neq 1$.
15. **Cor 3.5.2.** $f \in F[x]$ irreducible. If f has repeated roots then $p := \text{char } f \neq 0$ and $f(x) = g(x^p)$ for some g .
16. **Cor 3.6.2.** A finite field has $q = p^n$ elements.
17. **Cor 3.6.3** (Fermat). In a finite field with q elements, $\forall a a^q = 1$.
18. **Thm 3.6.4.** A finite field with q elements is a splitting field of $x^q - x$ over \mathbb{F}_p (and thus any two are isomorphic).
19. **Thm 3.6.7.** The roots of $x^q - x$ in its splitting field make a field, and hence \mathbb{F}_q exists.
20. **Thm 3.6.8.** In a finite group, if for every n there are at most n elements with $g^n = e$, then G is cyclic.
21. **Cor 3.6.9.** Any finite subgroup of the multiplicative group of a field is cyclic.
22. **Cor 3.6.10.** The multiplicative group of \mathbb{F}_q is cyclic.
23. **Def 3.7.1.** Separable elements, separable extensions.
24. **Prop 3.7.2.** in characteristic 0, every extension is separable.
25. **Example 3.7.3.** If $\text{char } F = p$ and $E = F(z)$ then $E(z^{1/p})/E$ is not separable.
26. **Thm 3.7.4.** A separable extension can be generated by a single element.
27. **Thm 3.8.2.** Distinct field automorphisms are linearly independent.
28. **Thm 3.8.3.** The fixed set E^S of a set S of automorphisms of F is a field, "the fixed field".
29. **Def.** $\text{Gal}(E/F)$.
30. **Claim** $E^{\text{Gal}(E/F)} \supset F$.
31. **Thm 3.8.5.** $|\text{Gal}(E/F)| \leq [E : F]$.

Gallian.

1. **Page 557.** $\text{Gal}(3x^5 - 15x + 5) \cong S_5$.

08-401 handout "Fundamental Theorem". Assuming $\text{char } F = 0$.

1. **The Fundamental Theorem.** Given a splitting E/F , there is a bijection $\{K: E/K/F\} \longleftrightarrow \{H: H < \text{Gal}(E/F)\}$ which is
 - (a) Inclusion reversing.
 - (b) Degree/index respecting: $[E : K] = |\text{Gal}(E/K)|$ and $[K : F] = (\text{Gal}(E/F) : \text{Gal}(E/K))$.
 - (c) Splitting fields correspond to normal subgroups: If K in $E/K/F$ is the splitting field of a polynomial in $F[x]$ then $\text{Gal}(E/K)$ is normal in $\text{Gal}(E/F)$ and $\text{Gal}(K/F) \cong \text{Gal}(E/F)/\text{Gal}(E/K)$.