

This is Dror Bar-Natan's 2025-26 MAT 347 personal notebook (B). It is publically available but it comes with no guarantees whatsoever. Its content may or may not be correlated with the actual class content.

Tentative Plan.

Weeks 1-2: Ring theory. On Friday of week 2 must do modules.

Week 3: Tensor products, examples, "the ring of modules", maybe the field of fractions.

Week 4: The structure theorem of modules over a PID.

Weeks 5-11: Galois theory.

Week 12: The topological proof.

For commutative rings: R/I a field $\Leftrightarrow I$ is maximal

R/I a domain \Leftrightarrow I is prime
 $(ab=0 \Rightarrow a=0 \vee b=0)$ $\quad ab \in I \Rightarrow a \in I \vee b \in I$

I is maximal $\Rightarrow I$ is prime

standing assumption: Our rings are commutative domains:

P Prime: $(P|ab \Rightarrow P|a \text{ or } P|b) \Leftrightarrow (P \text{ is prime})$

x irreducible: $x=ab \Rightarrow a \in R^*$ or $b \in R^*$ in $\mathbb{Z}[\sqrt{-5}]$
 x irreducible 2 is irreducible

Prime \Rightarrow irreducible but irreducible \nRightarrow prime. $2|6 = (1+\sqrt{-5})(1-\sqrt{-5})$

Unique factorization \leadsto UFD

\mathbb{Z} : $\forall a, b \in \mathbb{Z} \quad \langle a, b \rangle = \langle c \rangle \leadsto$ $\begin{cases} \text{PID} \\ \exists I \text{ remainder smaller than deno.} \end{cases} \leadsto$ Eucl D

$\mathbb{Q}[x]$

$\mathbb{Z}[x]$

$\mathbb{Q}[x, y]$

Def A UFD (unique fact. domain) is a domain in which every non-zero element can be factored into primes: $\mathcal{C} = \cup P_1 P_2 \dots P_n$

Def PID

Def Euclidean Domain

Thm In a UFD, factorizations are unique up to units & re-ordering.

Thm In a UFD, prime \Leftrightarrow irreducible.

PF If an irred. is factored, it is presented as a product of a single prime. skip

Thm R is a UFD \Leftrightarrow Every $x \neq 0$ has a unique decomposition into irreducibles.

Pf \Rightarrow done.

Skipped

\Leftarrow need irred \Rightarrow prime. If x is irred & $x \nmid ab$,

then $\exists x = \underbrace{a_1 \dots a_n}_{\text{irreds}} \underbrace{b_1 \dots b_m}_{\text{irreds}} \Rightarrow \text{ord}_{x \sim a_i} \Rightarrow x \mid a_i \text{ or } x \mid b_i$.

Thm In a UFD, gcd's always exist.

Def. Euclidean domain: has a "norm" $\ell: R - \{0\} \rightarrow \mathbb{N}$ s.t.

1. $\ell(ab) \geq \ell(a)$
2. $\forall a, b \exists q, r$ s.t. $a = qb + r$ &
 $r = 0$ or $\ell(r) < \ell(b)$

Example 1. \mathbb{Z}

$$\text{Example } \frac{a = x^3 - 2x^2 - 5x + 12}{b = x^2 + 1}$$

2. $\mathbb{F}[x]$... $r = -(x+1)y$ } why?
 $a(i) = 14 - 6i$

Theorem. A Euclidean domain is a "PID" (def).

(Thm: a PID is a UFD, later)

Proposition. In a PID, every prime ideal is maximal.

Pf. $I = \langle p \rangle$ prime, $I \subset J = \langle x \rangle \subset R \Rightarrow p = ax \Rightarrow$ $(ax \in I^* \Rightarrow I = J) \vee (x \in I^* \Rightarrow J = R)$

Prop In a PID, irreducible \Rightarrow prime

Skipped

If I $\text{IF } x$ is irred, $\langle x \rangle$ is maximal, for

if $\langle x \rangle \subset \langle a \rangle$ then $x = ab$ & $\frac{a \in R^*}{b \in R^*} \Rightarrow \langle a \rangle = R$ So $\langle x \rangle$ is prime.

Thm PID \Rightarrow UFD

done!

Lemma: PID's are Noetherian

UFD: Unique Factorization domain, $\mathcal{R} = \mathcal{U}\mathcal{P} \dots \mathcal{V}$ PID: Principal ideal domain: I ideal $\Rightarrow I = \langle x \rangle$ Euc: $\exists \ell: \mathbb{R}^{\times} \text{factors} \rightarrow \mathbb{N}$ 1. $\ell(a|b) \geq \ell(a)$
2. $\forall a, b \neq 0 \exists q, r$ such that $a = bq + r$ and $\ell(r) < \ell(b)$ EUC \Rightarrow PID \Rightarrow UFD

nearly! got a prod. of irreduc. instead of primes.

Prop In a PID, irreducible \Rightarrow primeIF $\langle x \rangle$ is irreduc., $\langle x \rangle$ is maximal, forif $\langle x \rangle \subset \langle a \rangle$ then $x = ab$ & $a \in \mathbb{R}^* \Rightarrow \langle a \rangle = \mathbb{R}$ so $\langle x \rangle$ is prime.Aside 1 In a UFD, irreducible \Rightarrow prime

IF an irreduc. is factor, it is a product of a single prime.

Aside 2 UFD \Leftrightarrow $\mathcal{R} \neq 0$ has a unique decomposition into irreducibles

skip

prime.

gcd stuff

Finish Rings so

next week can do modulus?