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Q2
Let 𝑓 : 𝑆1 = {𝑧 ∈ ℂ : |𝑧| = 1} → ℝ be a continuous function. Show that there exists 𝑧 ∈ 𝑆1

such that 𝑓(𝑧) = 𝑓(−𝑧).

Answer.

Let 𝑔 : 𝑆1 → ℝ be defined by 𝑔(𝑧) = 𝑓(𝑧) − 𝑓(−𝑧).

Fix 𝑧0 ∈ 𝑆1 and consider 𝑎 ≔ 𝑔(𝑧0). Then,

−𝑎 = 𝑓(−𝑧) − 𝑓(𝑧) = 𝑓(−𝑧) − 𝑓(−(−𝑧)) = 𝑔(−𝑧0)

Since 𝑆1 is connected and 𝑔 is continuous, we have 𝑔(𝑆1) connected. The above shows that
both 𝑎, −𝑎 ∈ 𝑔(𝑆1), and since the only connected subspaces of ℝ are convex, we thus have
(assuming without loss of generality that 𝑎 ≥ 0), that [−𝑎, 𝑎] ⊂ 𝑔(𝑆1). But then, −𝑎 ≤ 0 ≤ 𝑎,
so 0 ∈ 𝑔(𝑆1), which is to say there exists some 𝑧 ∈ 𝑆1 such that

0 = 𝑔(𝑧) = 𝑓(𝑧) − 𝑓(−𝑧)

and hence 𝑓(𝑧) = 𝑓(−𝑧). ∎
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Q3
If 𝐴 ⊂ 𝑋 and 𝐴 is path connected, is 𝐴 always path connected too?

Answer. No. The topologist’s sine curve yields a counter example.

Set 𝑋 = ℝ2 and take 𝐴 ⊂ 𝑋 to be

𝐴 = {(𝑥, sin(1
𝑥

)) : 𝑥 > 0}

Then, 𝐴 is path connected because given any (𝑡0, sin( 1
𝑡0

)), (𝑡1, sin( 1
𝑡1

)) ∈ 𝐴, the function
𝛼 : [0, 1] → 𝐴 defined by

𝛼(𝑡) = (𝑡0 + 𝑡(𝑡1 − 𝑡0), sin( 1
𝑡0 + 𝑡(𝑡1 − 𝑡0)

))

is a path from 𝑡0 to 𝑡1 lying in 𝐴.

We will show that 𝐴 is not path connected. First, a technical lemma.

Lemma. Let 𝑟 > 0 and 𝑦 ∈ [−1, 1]. There exists 0 < 𝑡 < 𝑟 such that sin(1
𝑡 ) = 𝑟.

Proof. Since sin is surjective, we can choose some 𝑡′ ≥ 0 such that sin(𝑡′) = 𝑦. Then, choose
𝑁 ∈ ℕ large enough so that 𝑡 = | 1

𝑡′+2𝜋𝑁 | < 𝑟, so that

sin(1
𝑡
) = sin(𝑡′ + 2𝜋𝑁) = sin(𝑡′) = 𝑦

∎

Claim. 𝐴 = 𝐴 ∪ ({0} × [−1, 1]).

Proof. We show the (⊃) inclusion first.

Let (𝑥, 𝑦) ∈ 𝐴 ∪ ({0} × [−1, 1]). If (𝑥, 𝑦) ∈ 𝐴, we’re done. Otherwise, 𝑥 = 0 and 𝑦 ∈ [−1, 1].
Given any neighborhood 𝐵𝑟((𝑥, 𝑦)) of (𝑥, 𝑦), we can choose by our lemma some 0 < 𝑡 < 𝑟
such that sin(1

𝑡 ) = 𝑦, so that (𝑡, sin(1
𝑡 )) ∈ 𝐴 and |(𝑥, 𝑦) − (𝑡, sin(1

𝑡 ))| = |𝑡| < 𝑟. In other
words, 𝐵𝑟((𝑥, 𝑦)) intersects 𝐴. So, (𝑥, 𝑦) ∈ 𝐴.

For the other inclusion, let (𝑥, 𝑦) ∈ 𝐴. Since 𝐴 ⊂ [0, ∞) × [−1, 1] which is closed, we must
have 𝐴 ⊂ [0, ∞) × [−1, 1], so 𝑥 ≥ 0 and 𝑦 ∈ [−1, 1]. If 𝑥 = 0, then (𝑥, 𝑦) ∈ {0} × [−1, 1] and
we’re done. Otherwise, 𝑥 > 0. We’ll show that 𝑦 = sin( 1

𝑥) by showing |𝑦 − sin( 1
𝑥)| < 𝜀 for

every 𝜀 > 0. Given 𝜀 > 0, choose by continuity some 𝛿 > 0 such that if |𝑥 − 𝑥′| < 𝛿, then
|sin( 1

𝑥) − sin( 1
𝑥′ )| < 𝜀

2 . Then, there exists a neighborhood 𝑈  of (𝑥, 𝑦) sufficiently small so that
every (𝑥′, 𝑦′) ∈ 𝑈  satisfies |𝑥 − 𝑥′| < 𝛿 and |𝑦′ − 𝑦| < 𝜀

2 . Since (𝑥, 𝑦) ∈ 𝐴, we can find
(𝑥′, 𝑦′) ∈ 𝑈 ∩ 𝐴, so that 𝑦′ = sin( 1

𝑥′ ), and hence

|𝑦 − sin(1
𝑥

)| ≤ |𝑦 − sin( 1
𝑥′ )| + |sin( 1

𝑥′ ) − sin(1
𝑥

)| < 𝜀

So, 𝑦 = sin( 1
𝑥) and hence (𝑥, 𝑦) ∈ 𝐴 ⊂ 𝐴 ∪ ({0} × [−1, 1]).

Both inclusions show 𝐴 = 𝐴 ∪ ({0} × [−1, 1]) as needed. ∎

Finally, we show that 𝐴 is not path connected. The following proof was adapted from
Munkres.
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Suppose for the sake of contradiction that 𝐴 is path connected, so that there exists a path
𝛾′ : [0, 1] → 𝐴 from (0, 0) to some point (𝑥0, 𝑦0) ∈ 𝐴.

The preimage 𝛾′−1({0} × [−1, 1]) is closed by continuity, so it has a largest element 𝑏 and so,
since 𝐴 = 𝐴 ∪ ({0} × [−1, 1]), the image 𝛾′((𝑏, 1]) is contained in 𝐴. By translating and
scaling as necessary, we obtain a continuous map 𝛾 : [0, 1] → 𝐴 where 𝛾(0) = 𝑏 ∈ {0} × [−1, 1]
and 𝛾(𝑡) ∈ 𝐴 for 𝑡 > 0, which is to say 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) for some continuous 𝑥, 𝑦 : [0, 1] → ℝ
where 𝑥(𝑡) = 0 and 𝑦(𝑡) = 1

sin(𝑥(𝑡))  for 𝑡 > 0.

We define sequences (𝑢𝑛), (𝑡𝑛) as follows: for each 𝑛, choose by our lemma some some
𝑥(0) = 0 < 𝑢𝑛 < 𝑥( 1

𝑛) such that sin( 1
𝑢) = (−1)𝑛 and apply the intermediate value theorem to

𝑥 to obtain some 0 < 𝑡𝑛 < 1
𝑛  such that 𝑥(𝑡𝑛) = 𝑢𝑛.

Then, the sequence (𝑡𝑛) converges to 0, but the sequence 𝑦(𝑡𝑛) = sin( 1
𝑥(𝑡𝑛)) = sin( 1

𝑢𝑛
) =

(−1)𝑛 does not converge, contradicting continuity of 𝑦.

Thus, 𝐴 ⊂ ℝ2 is a path connected set whose closure is not path connected, so it is not true
that the closure of path connected sets is always path connected. ∎
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Q4
Show that an open connected subset 𝑈  of ℝ𝑛 is path-connected.

Answer.

Recall that we defined connected-ness to exclude empty sets, so 𝑈 ≠ ∅ and fix 𝑥0 ∈ 𝑈 . Define

𝑆 = {𝑥 ∈ 𝑈 : there exists a path in 𝑈 from 𝑥0 to 𝑥}

We claim that 𝑆 is both open and closed in 𝑈 .

For 𝑆 open, let 𝑥 ∈ 𝑆 be arbitrary. Since 𝑥 ∈ 𝑈 , and 𝑈  is open, there exists 𝜀 > 0 such that
the ball 𝐵𝜀(𝑥) ⊂ 𝑈 . We’ll show that every 𝑥′ ∈ 𝐵𝜀(𝑥) is also in 𝑆. Fix 𝑥′ ∈ 𝐵𝜀(𝑥). Since balls
in ℝ𝑛 are convex, the straight line path connecting 𝑥 and 𝑥′ lies in 𝐵𝜀(𝑥) and therefore in 𝑈 .
Since 𝑥0 is connected to 𝑥 via a path in 𝑈  and 𝑥 is connected to 𝑥′ via a path in 𝑈 , we have
a path from 𝑥 to 𝑥′ lying in 𝑈 , so that 𝑥′ ∈ 𝑆. Thus, 𝑆 is open.

Now, for 𝑆 closed, we use the equivalence of closure and sequential closure in metric spaces.
Let 𝑥 ∈ 𝑆 (where 𝑆 is the closure in 𝑈), so that there exists a sequence (𝑥𝑛) in 𝑆 converging
to 𝑥. Since 𝑥 ∈ 𝑈 , we have some 𝜀 > 0 such 𝐵𝜀(𝑥) ⊂ 𝑈 , and since 𝑥𝑛 ⟶ 𝑥, we have some
𝑁 ∈ ℕ such that 𝑥𝑁 ∈ 𝐵𝜀(𝑥). Again, balls are convex, so the straight line path connecting
𝑥𝑁  and 𝑥 lies in 𝐵𝜀(𝑥) and therefore in 𝑈 , and so, since 𝑥0 is connected to 𝑥𝑁  via a path in
𝑈  and 𝑥𝑁  is connected to 𝑥 via a path in 𝑈 , we have a path from 𝑥0 to 𝑥 via a path in 𝑈 .
Thus, 𝑆 contains its closure and hence is closed.

Now, the constant path gives a path from 𝑥0 to itself, so certainly 𝑥0 ∈ 𝑆, and hence 𝑆 is
not-empty. But, given that 𝑈  is connected, the only non-empty, clopen subset of 𝑈  is 𝑈  itself,
so that 𝑆 = 𝑈 . In other words, every 𝑥 ∈ 𝑈  is connected to 𝑥0 via a path in 𝑈 , but then, 𝑈
itself is path-connected, since given any two 𝑥, 𝑦 ∈ 𝑈 , we can combine the paths from 𝑥 to 𝑥0
and from 𝑥0 to 𝑦 to obtain a path from 𝑥 to 𝑦.

Thus, open connected subsets of ℝ𝑛 are path connected. ∎
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Q5
Let 𝑋 be an uncountable set.

(a) Show that the finite complement topology on 𝑋 is compact.
(b) Is the countable-complement topology on 𝑋 compact?

Answer.

(a) Let 𝒰 = {𝑈𝛼} be an open cover of 𝑋. Fix 𝑈𝛼0
∈ 𝒰. Since 𝑈𝛼0

 is open, its complement is
finite, so write 𝑈𝑐

𝛼0
= {𝑥1, …, 𝑥𝑛} and let, for each 1 ≤ 𝑖 ≤ 𝑛, 𝛼𝑖 be such that 𝑥𝑖 ∈ 𝑈𝛼𝑖

.
Then,

𝑋 = 𝑈𝛼0
∪ 𝑈𝑐

𝛼0
⊂ 𝑈𝛼0

∪ (𝑈𝛼1
∪ ⋯ ∪ 𝑈𝛼𝑛

)

so that {𝑈𝛼0
, …, 𝑈𝛼𝑛

} is a finite subcover of 𝒰.

Thus, every open cover of 𝑋 has a finite subcover, so 𝑋 is compact.

(b) No. We will exhibit a closed subspace of 𝑋 which is not compact. First, we show that
subspaces of 𝑋 also have the countable-complement topology.

Lemma. Let 𝑆 ⊂ 𝑋 have the subspace topology. Then, the topology on 𝑆 is the
countable-complement topology.

Proof. Let 𝑈 ⊂ 𝑆 be open in the subspace topology. Then, 𝑈 = 𝑆 ∩ 𝑈 ′ where 𝑈 ′ is open
in 𝑋, which is to say either 𝑈 ′ = ∅ in which case 𝑈 = ∅ is open, or 𝑋 ∖ 𝑈 ′ is countable
so that

𝑆 ∖ 𝑈 = 𝑆 ∖ 𝑈 ′ ⊂ 𝑋 ∖ 𝑈 ′

must also be countable, so 𝑈  is open in the countable-complement topology on 𝑆.

Conversely, suppose 𝑈 ⊂ 𝑆 is open in the countable-complement topology. If 𝑈 = ∅, then
obviously 𝑈  is open in the subspace topology on 𝑆 as well. Otherwise, 𝑆 ∖ 𝑈  is countable
and 𝑈 = 𝑆 ∩ (𝑆𝑐 ∪ 𝑈) where 𝑆𝑐 ∪ 𝑈  is open in 𝑋 because

𝑋 ∖ (𝑆𝑐 ∪ 𝑈) = (𝑋 ∖ 𝑆𝑐) ∩ 𝑋 ∖ 𝑈 = 𝑆 ∖ 𝑈

is countable.

Thus, the subspace topology on 𝑆 is equal to the countable complement topology on 𝑆. ∎

Since 𝑋 is infinite, it has a countable subspace, call it 𝒩 = {𝑥1, 𝑥2, 𝑥3, …}.

Note that 𝒩 is closed, since its complement has a countable complement (namely, 𝒩)
and hence is open.

Now, for each 𝑥𝑖, the singleton {𝑥𝑖} has countable 𝒩-complement, so is open in the
subspace 𝒩, by our lemma. Therefore, the set 𝒰 = {{𝑥𝑖}}∞

𝑖=1 forms an open cover of 𝒩.
But, 𝒰 can have no finite subcover, since any finite union of elements in 𝒰 is finite, and
therefore can not contain 𝒩.

So, 𝒩 is closed but not compact. Since 𝑋 has a closed but not compact subspace, we
have by the contrapositive of the “closed subspaces of compact spaces are compact”
theorem from class that 𝑋 is not compact. ∎
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Q6
Show that every compact subspace 𝐴 of a metric space 𝑀  is closed and bounded.

Is the converse true?

Answer.

Let 𝑀  be a metric space and 𝐴 ⊂ 𝑀  be compact.

We show boundedness first. Fix some 𝑥0 ∈ 𝑀  and consider 𝒰 = {𝐵𝑟(𝑥0) : 𝑟 > 0}. Clearly, 𝒰
is an open cover of 𝐴, since given any 𝑎 ∈ 𝐴, the distance 𝑑(𝑎, 𝑥0) is finite and hence in
𝐵𝑟(𝑥0) for some 𝑟 > 0. By compactness of 𝐴, 𝒰 has a finite subcover 𝐵𝑟1

(𝑥0), …, 𝐵𝑟𝑛
(𝑥0).

Taking 𝑟 = max{𝑟1, …, 𝑟𝑛}, we then have 𝐴 ⊂ 𝐵𝑟(𝑥0), so 𝐴 is bounded.

For closedness of 𝐴, recall that every metric space is Hausdorff, since given any two points
𝑥, 𝑦, the balls of radius 𝑑(𝑥,𝑦)

2  centered at 𝑥, 𝑦 separate them, and we showed in class that
compact subspaces of Hausdorff spaces are closed.

Thus, every compact subspace 𝐴 of a metric space 𝑀  is closed and bounded. ∎

No, the converse is not true. Let 𝑀 = ℝ with the bounded metric, i.e

𝑑(𝑥, 𝑦) = min(|𝑥 − 𝑦|, 1)

Under this metric, ℝ is a closed and bounded subset of itself, but is not compact because the
above metric induces the standard topology on ℝ under which ℝ is not compact, as was
shown in class.
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Q7
Show that if 𝐴 and 𝐵 are disjoint compact subsets of a Hausdorff space 𝑋, then there exists
disjoint open sets 𝑈  and 𝑉  in 𝑋 such that 𝐴 ⊂ 𝑈  and 𝐵 ⊂ 𝑉 .

Answer.

We first show that we can separate individual points of 𝐴 from the entirety of 𝐵.

Claim. For each 𝑥 ∈ 𝐴, there exist disjoint open sets 𝑈𝑥, 𝑉𝑥, such that 𝑥 ∈ 𝑈𝑥 and 𝐵 ⊂ 𝑉𝑥.

Proof. Let 𝑥 ∈ 𝐴. For each 𝑦 ∈ 𝐵, we have 𝑥 ≠ 𝑦, since 𝐴, 𝐵 are disjoint, so choose by the
Hausdorff condition some disjoint open sets Φ𝑦, Ψ𝑦 such that 𝑥 ∈ Φ𝑦, 𝑦 ∈ Ψ𝑦.

Then, the collection of all Ψ𝑦 form an open cover of 𝐵, so by compactness of 𝐵, we get
𝑦1, …, 𝑦𝑛 so that Ψ𝑦1

, …, Ψ𝑦𝑛
 cover 𝐵. Set

𝑈𝑥 = ⋂
𝑛

𝑖=1
Φ𝑦𝑖

and 𝑉𝑥 = ⋃
𝑛

𝑖=1
Ψ𝑦𝑖

Clearly, 𝑈𝑥, 𝑉𝑥 are open, 𝑥 ∈ 𝑈𝑥, and 𝐵 ⊂ 𝑉𝑥. Also, 𝑈𝑥, 𝑉𝑥 are disjoint, for if 𝑏 ∈ 𝑉𝑥, then 𝑏 ∈
Ψ𝑦𝑖

 for some 𝑖 and so 𝑏 ∉ Φ𝑦𝑖
 by construction, and hence 𝑏 ∉ 𝑈𝑥. ∎

For each 𝑥 ∈ 𝐴, let 𝑈𝑥, 𝑉𝑥 be as in the above claim. Then, the collection of all 𝑈𝑥 form an
open cover of 𝐴, so by compactness of 𝐴, we get 𝑥1, …, 𝑥𝑛 such that 𝑈𝑥1

, …, 𝑈𝑥𝑛
 cover 𝐴.

Then, set

𝑈 = ⋃
𝑛

𝑖=1
𝑈𝑥𝑖

and 𝑉 = ⋂
𝑛

𝑖=1
𝑉𝑥𝑖

Clearly, 𝑈, 𝑉  are open. By choice of the 𝑥𝑖, we have 𝐴 ⊂ 𝑈 , and since 𝐵 ⊂ 𝑉𝑥𝑖
 for each 𝑖, we

also have 𝐵 ⊂ 𝑉 . Moreover, 𝑈, 𝑉  are disjoint, for if 𝑎 ∈ 𝑈 , then 𝑎 ∈ 𝑈𝑥𝑖
 for some 𝑖 and so 𝑎 ∉

𝑉𝑥𝑖
 by construction, and hence 𝑎 ∉ 𝑉 . ∎

7


	Q2
	Q3
	Q4
	Q5
	Q6
	Q7

