P 2024-10-16

Question 2

Let x_1, x_2, \ldots be a sequence of points in a product space $\prod X_{\alpha}$. Show that this sequence converges to the point x iff $\pi_{\alpha}(x_k) \to \pi_{\alpha}(x)$ for every α . Is the same fact true in the box topology?

Answer.

- (⇒) Suppose the sequence $(x_k)_{k=1}^{\infty}$ converges to x. Let α be arbitrary and $U \subset X_{\alpha}$ be an open neighborhood of $\pi_{\alpha}(x)$. Then $\pi_{\alpha}^{-1}(U)$ is an open neighborhood of x, so there exists $N \in \mathbb{N}$ such that k > N implies $x_k \in \pi_{\alpha}^{-1}(U)$. Then, if k > N, we have $\pi_{\alpha}(x_k) \in \pi_{\alpha}(\pi_{\alpha}^{-1}(U)) \subset U$. That is, if k > n, then $\pi_{\alpha}(x_k) \in U$. Thus, for every open neighborhood of $\pi_{\alpha}(x)$, the sequence $\pi_{\alpha}(x_k)$ eventually resides in said neighborhood, so $\pi_{\alpha}(x_k)$ converges to $\pi_{\alpha}(x)$, for every α .
- (\Leftarrow) Suppose the sequence $\pi_{\alpha}(x_k)$ converges to $\pi_{\alpha}(x)$ for every α . Let U be an open neighborhood of x and let $B \subset U$ be a basic set containing x. Then, for some $\alpha_1, ..., \alpha_m$, and $U_{\alpha_1}, ..., U_{\alpha_m}$, we have

$$B=\pi_{\alpha_1}^{-1} \bigl(U_{\alpha_1} \bigr) \cap \ldots \cap \pi_{\alpha_m}^{-1} \bigl(U_{\alpha_m} \bigr)$$

In particular, since $x \in \pi_{\alpha_i}^{-1}(U_{\alpha_i})$, we have $\pi_{\alpha_i}(x) \in U_{\alpha_i}$, for each $1 \leq i \leq m$. Since the sequence $\pi_{\alpha_i}(x_k)$ converges to $\pi_{\alpha_i}(x)$, we thus have for each $1 \leq i \leq m$, some $N_i \in \mathbb{N}$ such that $n > N_i$ implies $\pi_{\alpha_i}(x_n) \in U_{\alpha_i}$. We set $N = \max_{1 \leq i \leq m} N_i$. Then, if n > N, we have for every $1 \leq i \leq m$, $\pi_{\alpha_i}(x_n) \in U_{\alpha_i}$, which is to say

$$x_n \in \pi_{\alpha_1}^{-1} \big(U_{\alpha_1} \big) \cap \ldots \cap \pi_{\alpha_m}^{-1} \big(U_{\alpha_m} \big) = B$$

Thus, if n > N, $x_n \in B \subset U$. Therefore, for every open neighborhood of x, the sequence (x_k) eventually resides in said neighborhood, so (x_k) converges to x.

Both implications demonstrate that the sequence (x_k) converges to x if and only if the sequence $(\pi_{\alpha}(x_k))$ converges to $\pi_{\alpha}(x)$ for every α .

No, the same fact is not true in the box topology. While convergence of the sequence (x_k) does imply the convergence of the sequence $\pi_{\alpha}(x_k)$ to $\pi_{\alpha}(x)$ for every α (the same proof works unchanged), the reverse implication no longer holds.

To see why, consider the product space $\prod_{i\in\mathbb{N}}\mathbb{R}$ and the sequence

$$x_k = (\underbrace{1, 1, ..., 1}_{k \text{ times}}, 0, 0, ...,)$$

That is, x_k is the sequence where the first k elements are 1, and the remaining are 0.

Let $x \in \prod_{i \in \mathbb{N}} \mathbb{R}$ be the sequence which is constantly 1, x = (1, 1, 1, ...). It is easy to see that $\pi_i(x_k)$ converges to $\pi_i(x)$ for every $i \in \mathbb{N}$, for the sequence $\pi_i(x_k)$ is constantly 1 after the first *i* terms.

On the other hand, it is impossible for the sequence (x_k) to converge to x. Consider the neighborhood

$$U = \prod_{i \in \mathbb{N}} \left(\frac{1}{2}, \frac{3}{2} \right)$$

which is open in the box topology and contains x. For any $N \in \mathbb{N}$, the sequence element $x_{N+1} \notin U$, for it's (N+2)th element is zero and therefore not in $(\frac{1}{2}, \frac{3}{2})$. Thus, it's impossible for any tail of the sequence to reside in U, so (x_k) can not converge to x in the box topology.

Let \mathbb{R}^{∞} be the subset of $\mathbb{R}^{\mathbb{N}}$ consisting of the sequences that are almost always 0 - meaning, that are not zero only for finitely many indices. What is the closure of \mathbb{R}^{∞} in $\mathbb{R}^{\mathbb{N}}$ in the box and in the cylinders topology?

Answer. The closure of \mathbb{R}^{∞} is \mathbb{R}^{∞} in the box topology and $\mathbb{R}^{\mathbb{N}}$ in the cylinders topology.

Closure in the box topology. We show that if $x \in \mathbb{R}^{\mathbb{N}}$ is not in \mathbb{R}^{∞} , then $x \notin \overline{\mathbb{R}^{\infty}}$.

Let $x \in \mathbb{R}^{\mathbb{N}} \setminus \mathbb{R}^{\infty}$. For each $i \in \mathbb{N}$, define

$$U_i = \begin{cases} (-1,1) & x_i = 0 \\ \left(x_i - \frac{|x_i|}{2}, x_i + \frac{|x_i|}{2}\right) \text{ otherwise} \end{cases}$$

and set

$$U = \prod_{i \in \mathbb{N}} U_i$$

Then, U is an open neighborhood of x, since each U_i is open and $x_i \in U_i$ for every i by construction. We claim that U can not intersect \mathbb{R}^{∞} . Let $y \in U$. Since $x \notin \mathbb{R}^{\infty}$, there is an infinite sequence k_1, k_2, \ldots such that $x_{k_i} \neq 0$. For each such k_i , we have

$$y_{k_i} \in U_{k_i} = \left(x_{k_i} - \frac{|x_{k_i}|}{2}, x_{k_i} + \frac{|x_{k_i}|}{2}\right)$$

which necessitates $y_{k_i} \neq 0$. Since y is non-zero at infinitely many points, it can't be in \mathbb{R}^{∞} . Thus, U is an open neighborhood of x not intersecting \mathbb{R}^{∞} , so $x \notin \overline{R^{\infty}}$.

Therefore, $\overline{R^{\infty}} = \mathbb{R}^{\infty}$.

Closure in the cylinders topology. We show that the entirety of $\mathbb{R}^{\mathbb{N}}$ is in $\overline{\mathbb{R}^{\infty}}$.

Let $x \in \mathbb{R}^{\mathbb{N}}$ and B be a basic neighborhood of x. Then, for some $i_1, ..., i_k \in \mathbb{N}$ and open sets $U_{i_1}, ..., U_{i_k} \subset \mathbb{R}$, we have

$$B = \pi_{i_1}^{-1} \left(U_{i_1} \right) \cap \ldots \cap \pi_{i_k}^{-1} \left(U_{i_k} \right)$$

Define $y \in \mathbb{R}^{\mathbb{N}}$ by

$$y_i = \begin{cases} x_i & i \in \{i_1, ..., i_k\} \\ 0 & \text{otherwise} \end{cases}$$

It is clear that $y \in \mathbb{R}^{\infty}$, for y_i can be non-zero only if $i \in \{i_1, ..., i_k\}$ which is a finite set. Also, $y \in B$, for $\pi_i(y) = x_i \in U_i$ for each $i \in \{i_1, ..., i_k\}$.

Thus, every open neighborhood of x intersects \mathbb{R}^{∞} , so $x \in \overline{\mathbb{R}^{\infty}}$ and hence $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\mathbb{N}}$, as needed.

م

Show that $\mathbb{R} \times \mathbb{R}$ in the dictionary order topology is metrizable.

Answer. Recall the result of Question 4 in HW3, where we showed that the dictionary order topology on $\mathbb{R} \times \mathbb{R}$ was in fact equal to the product topology on $\mathbb{R}_d \times \mathbb{R}$, where \mathbb{R}_d is \mathbb{R} with the discrete topology. Thus, it suffices to show that the product of metric topologies is metrizable, which we do in the following lemma.

Lemma. Let X, Y be metric spaces with metrics d_X, d_Y respectively. Then, the product topology on $X \times Y$ is metrizable.

Proof. Define $d: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by

$$d((x_1,y_1),(x_2,y_2))=d_X(x_1,x_2)+d_Y(y_1,y_2)$$

Then, d is always non-negative, for d_X, d_Y are always non-negative, and

$$\begin{split} d((x_1,y_1),(x_2,y_2)) &= 0 \Longleftrightarrow d_X(x_1,x_2) = 0 \text{ and } d_Y(y_1,y_2) = 0 \\ \Leftrightarrow x_1 = x_2 \text{ and } y_1 = y_2 \\ \Leftrightarrow (x_1,y_1) = (x_2,y_2) \end{split}$$

Similarly, since d_X, d_Y are symmetric,

$$\begin{split} d((x_1,y_1),(x_2,y_2)) &= d_X(x_1,x_2) + d_Y(y_1,y_2) \\ &= d_X(x_2,x_1) + d_Y(y_2,y_1) \\ &= d((x_2,y_2),(x_1,y_1)) \end{split}$$

so d is symmetric. Finally, by the triangle inequality on d_X, d_Y , we have

$$\begin{split} d((x_1,y_1),(x_3,y_3)) &= d_X(x_1,x_3) + d_Y(y_1,y_3) \\ &\leq d_X(x_1,x_2) + d_X(x_2,x_3) + d_Y(y_1,y_2) + d_Y(y_2,y_3) \\ &= d_X(x_1,x_2) + d_Y(y_1,y_2) + d_X(x_2,x_3) + d_Y(y_2,y_3) \\ &= d((x_1,y_1),(x_2,y_2)) + d((x_2,y_2),(x_3,y_3)) \end{split}$$

so d satisfies the triangle inequality.

Finally, we show that the metric topology induced by d is equal to the product topology. Let $(p,q) \in X \times Y$.

Suppose B be a basic set of the product topology containing (p,q). Then, we have r, s > 0 such that $B_r(p) \times B_s(q) \subset B$. Setting $t = \min(r,s)$, we claim that $B_t((p,q)) \subset B_r(p) \times B_s(q)$. Indeed, if $(u,v) \in B_t((p,q))$, then we have

$$d_X(u,p) + d_Y(v,q) < t$$

so, since both d_X, d_Y are non-negative, we have both $d_X(u, p) < t \le r$ and $d_Y(v, q) < t \le s$ and hence $(u, v) \in B_r(p) \times B_s(q)$.

Conversely, suppose B is a basic set of the metric topology induced by d containing (p,q). Then, we have $\varepsilon > 0$ such that $B_{\varepsilon}((p,q)) \subset B$. We claim that $B_{\varepsilon/2}(p) \times B_{\varepsilon/2}(q) \subset B_{\varepsilon}((p,q))$. Indeed, if $(u,v) \in B_{\varepsilon/2}(p) \times B_{\varepsilon/2}(q)$, then $d_X(u,p) < \frac{\varepsilon}{2}$ and $d_Y(v,q) < \frac{\varepsilon}{2}$, so

$$d((u,v),(p,q))=d_X(u,p)+d_Y(v,q)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

Thus, the metric topology induced by d and the product topology of X, Y are each finer than the other, so they're equal. Therefore, the product topology of the metric spaces X, Y is metrizable.

م

Since we know the order topology on $\mathbb{R} \times \mathbb{R}$ is equal to the product topology on $\mathbb{R}_d \times \mathbb{R}$, and we've already seen in class that the discrete topology and the standard topology are metrizable, the lemma above gives us metrizability of $\mathbb{R} \times \mathbb{R}$ in the dictionary order topology.

Let X be a metric space with metric d.

- (a) Show that $d: X \times X \to \mathbb{R}$ is continuous.
- (b) Show that the metric topology on X is the weakest (coarsest, smallest) topology on X relative to which $d: X \times X \to \mathbb{R}$ is continuous.

Answer.

(a) It suffices to show that the *d*-preimage of basic sets is open. Let $(a, b) \subset \mathbb{R}$ be a basic open set and define

$$W = \{ (p,q) \in X \times X : d(p,q) \le a \}$$
$$U = \{ (p,q) \in X \times X : d(p,q) < b \}$$

Now, if $b \leq 0$, then $d^{-1}((a, b)) = \emptyset$ so we're done. Thus, we assume b > 0.

It is easy to see that $d^{-1}((a,b)) = W^c \cap U$, for if $(p,q) \in d^{-1}((a,b))$ then a < d(p,q) so $(p,q) \notin W$ and d(p,q) < b so $(p,q) \in U$. Conversely, if $(p,q) \notin W$ and $(p,q) \in U$, then a < d(p,q) < b, so $(p,q) \in d^{-1}((a,b))$.

We claim that W is closed, so that W^c is open, and that U is open, so the equation $d^{-1}((a,b)) = W^c \cap U$ writes the *d*-preimage of (a,b) as an intersection of open sets and hence open.

We first show W closed. Let $(p,q) \in \overline{W}$. It suffices to show that $d(p,q) < a + \varepsilon$ for every $\varepsilon > 0$. Indeed, given $\varepsilon > 0$, the set $B_{\varepsilon/2}(p) \times B_{\varepsilon/2}(q)$ is an open neighborhood of (p,q) and hence must intersect W in some point (x, y), so that

$$\begin{split} d(p,q) &\leq d(p,x) + d(x,q) & \text{triangle inequality} \\ &\leq d(p,x) + d(x,y) + d(y,q) \text{ triangle inequality} \\ &< \frac{\varepsilon}{2} + a + \frac{\varepsilon}{2} & x \in B_{\varepsilon/2}(p), y \in B_{\varepsilon/2}(q), \text{and } (x,y) \in W \\ &< a + \varepsilon \end{split}$$

Therefore, $d(p,q) \leq a$, so $(p,q) \in W$. Since W contains its closure, it is closed.

Next, we show that U is open. We claim the following equality:

$$U = \bigcup_{0 < r < b} \bigcup_{x \in X} B_r(x) \times B_{b-r}(x)$$

If (p,q) is in the union, then there exists 0 < r < b and $x \in X$ such that $p \in B_r(x)$ and $q \in B_{b-r}(x)$, so that

$$d(p,q) \leq d(p,x) + d(x,q) < r + (b-r) = b$$

and hence $(p,q) \in U$. Conversely, suppose $(p,q) \in U$. Now, if p = q, then we can take $r = \frac{b}{2} > 0$ and x = p = q to get (p,q) in the union. Otherwise, 0 < d(p,q) < b, so setting r = d(p,q) and x = q, we get $p \in B_r(q)$ and $q \in B_{b-r}(q)$ and hence (p,q) in the union.

Thus, we can write U as a union of open sets, so U is open.

Since W is closed and U is open, we have $d^{-1}((a, b)) = W^c \cap U$ is a finite intersection of open sets and hence open.

Since the d-preimage of basic sets is open, d is continuous.

(b) Let \mathcal{T} be a topology on X which makes d continuous. We claim that \mathcal{T} contains the basic sets of the metric topology; closure of topologies under finite intersections and arbitrary unions will then show that \mathcal{T} contains the metric topology.

So, let $x \in X$ and $\varepsilon > 0$. Let $(x, \cdot) : X \to X \times X$ be the "pairing" function with x, that is $(x, \cdot)(y) = (x, y)$. Note that this is continuous since composing with the first projection yields a constant function and composing with the second projection yields the identity.

Thus, the composition $d \circ (x, \cdot)$ is also continuous. We claim that

$$B_{\varepsilon}(x) = (d \circ (x, \cdot))^{-1}(-\infty, \varepsilon)$$

This is easy to see; if $y \in B_{\varepsilon}(x)$, then

$$(d\circ (x,\cdot))(y)=d((x,\cdot)(y))=d(x,y)<\varepsilon$$

so $B_{\varepsilon}(x) \subset (d \circ (x, \cdot))^{-1}(-\infty, \varepsilon)$. Conversely, if $y \in (d \circ (x, \cdot))^{-1}(-\infty, \varepsilon)$, then $d(x, y) = (d \circ (x, \cdot))(y) < \varepsilon$

so $y \in B_{\varepsilon}(x)$.

Therefore, $B_{\varepsilon}(x)$ is the preimage of a continuous function and hence open in \mathcal{T} . Thus, \mathcal{T} contains every ball, and hence must contain the entirety of the metric topology.

Since any topology making d continuous must contain the metric topology, and the metric topology makes d continuous (by (a)), we have the result: the metric topology on X is the coarsest one making d continuous.

With the same notation as in Q3, what is the closure of \mathbb{R}^{∞} in $\mathbb{R}^{\mathbb{N}}$ using the uniform topology, defined by the metric $d(x, y) = \sup_k (\min(1, |x_k - y_k|))$

Answer.

Define the set

$$C_0 = \Big\{ x \in \mathbb{R}^{\mathbb{N}} \mid \lim_{n \to \infty} x_n = 0 \Big\}$$

We claim that $\overline{\mathbb{R}^{\infty}} = C_0$.

(⊂) Let $x \in \overline{\mathbb{R}^{\infty}}$. We show x converges to zero. Let $\varepsilon > 0$ be given. Since $x \in \overline{\mathbb{R}^{\infty}}$, there exists $y \in B_{\varepsilon}(x) \cap \mathbb{R}^{\infty}$. Since y is non-zero at only finitely many points, there exists some $N \in \mathbb{N}$ such that $y_n = 0$ if n > N. Then, if n > N, we have

$$|x_n-0|=|x_n-y_n|\leq d(x,y)<\varepsilon$$

Thus, $\lim_{n\to\infty} x_n = 0$ and so $x \in C_0$.

(⊃) Let $x \in C_0$. It suffices to show that every ball centered at x intersects \mathbb{R}^∞ . So, let $\varepsilon > 0$ and consider the ball $B_{\varepsilon}(x)$. Since x converges to 0, there exists $N \in \mathbb{N}$ such that $|x_n - 0| < \frac{\varepsilon}{2}$ for n > N. Define $y \in \mathbb{R}^{\mathbb{N}}$ by

$$y_k = \begin{cases} x_k & k \le N \\ 0 & k > N \end{cases}$$

It is clear that $y \in \mathbb{R}^{\infty}$, for it can be non-zero only in the first N entries. We claim that $y \in B_{\varepsilon}(x)$. Indeed,

$$\begin{split} l(x,y) &= \sup_{k \in \mathbb{N}} (\min(1,|x_k - y_k|)) \\ &= \sup_{k > N} (\min(1,|x_k - y_k|)) \text{ since } x_k = y_k \text{ for } k \leq N \\ &= \sup_{k > N} (\min(1,|x_k|)) \qquad y_k = 0 \text{ for } k > N \\ &\leq \sup_{k > N} \left(\min\left(1,\frac{\varepsilon}{2}\right) \right) \qquad |x_k| < \frac{\varepsilon}{2} \text{ for } k > N \\ &\leq \frac{\varepsilon}{2} \\ &< \varepsilon \end{split}$$

Thus, every ball centered at x intersects \mathbb{R}^{∞} , so every open neighborhood of x intersects \mathbb{R}^{∞} , and hence $x \in \overline{\mathbb{R}^{\infty}}$.

Both inclusions show that the closure of \mathbb{R}^∞ in the uniform topology is the set of sequences converging to zero.

With the same "uniform metric" as in the previous question, with some fixed $x = (x_1, x_2, \ldots) \in \mathbb{R}^{\mathbb{N}}$, and with some 0 < r < 1, let $U(x, r) = \prod_k (x_k - r, x_k + r)$ (a product of intervals). Show that

(a) U(x,r) is not equal to the ball $B_r(x)$.

- (b) U(x,r) is not even open in the uniform topology.
- (c) $B_r(x) = \bigcup_{s \le r} U(x,s).$

Answer.

(a) We'll exhibit an element of U(x,r) missing from $B_r(x)$. Consider $y \in \mathbb{R}^{\mathbb{N}}$ defined by

$$y_k = x_k + r\left(1 - \frac{1}{k}\right)$$

Note, then, that $y \in U(x, r)$, since for every $k \in \mathbb{N}$, we have

$$x_k - r < x_k + r\left(1 - \frac{1}{k}\right) < x_k + r$$

On the other hand, $y \notin B_r(x)$, since

$$\begin{split} d(x,y) &= \sup_{k} (\min(1,|x_{k} - y_{k}|)) \\ &= \sup_{k} \left(\min\left(1, r\left(1 - \frac{1}{k}\right)\right) \right) \\ &= \sup_{k} \left(r\left(1 - \frac{1}{k}\right) \right) \qquad r < 1 \text{ so } r\left(1 - \frac{1}{k}\right) < 1 \\ &= r \end{split}$$

So $U(x,r) \neq B(x,r)$.

(b) Take $y \in \mathbb{R}^{\mathbb{N}}$ to be as in (a), that is

$$y_k = x_k + r \left(1 - \frac{1}{k}\right)$$

We saw in (a) that $y \in U(x, r)$. If U were open, then there must exist some $\delta > 0$ such that $B_{\delta}(y) \subset U$. We will show that no such δ can exist.

Let $\delta > 0$ and define $z \in \mathbb{R}^{\mathbb{N}}$ by $z_k = y_k + \delta/2$. Then, $z \in B_{\delta}(y)$ since $\begin{aligned} d(y, z) &= \sup_k (\min(1, |y_k - z_k|)) \\ &= \sup(\min(1, \delta/2)) \end{aligned}$

$$\leq \frac{\delta}{2} < \delta$$

But, $z \notin U(x, r)$, as we now show. Since $r(1 - \frac{1}{k}) \xrightarrow{k \to \infty} r$, we have some k_0 sufficiently large such that $|r(1 - \frac{1}{k_0}) - r| < \frac{\delta}{2}$, but then

$$z_{k_0} = y_{k_0} + \frac{\delta}{2} = x_{k_0} + r\left(1 - \frac{1}{k_0}\right) + \frac{\delta}{2} > x_{k_0} + r$$

		I	

so that $z_{k_0}\notin U_{k_0}$ and hence $z\notin U(x,r).$

Since every open ball centered at $y \in U(x, r)$ leaves U(x, r), U can not be open.

(c) Let $y \in B_r(x)$. Then, d(x, y) < r so there exists some s such that d(x, y) < s < r. Now, for every $k \in \mathbb{N}$, we have

$$|y_k - x_k| \leq d(x,y) < s$$

which implies $y_k \in (x_k - s, x_k + s)$ so that $y \in U(x, s)$ and hence, since $s < r, y \in \bigcup_{s < r} U(x, s)$. So, $B_r(x) \subset \bigcup_{s < r} U(x, s)$.

In the other direction, suppose $y \in \bigcup_{s < r} U(x, s)$ so that $y \in U(x, s)$ for some s < r. Then, $|y_k - x_k| < s$ for every $k \in \mathbb{N}$, so

$$\begin{split} d(x,y) &= \sup_k (\min(1,|x_k-y_k|)) \\ &\leq \sup_k (\min(1,s)) \\ &\leq s \\ &< r \end{split}$$

and hence $y \in B_r(x)$. So, $\bigcup_{s < r} U(x, s) \subset B_r(x)$.

Both inclusions show the desired equality: $B_r(x) = \bigcup_{s < r} U(x, s)$.

Disclaimers (added October 16th)

• In Q3, when showing \mathbb{R}^{∞} is closed, setting

$$U_i = \begin{cases} \mathbb{R} & x_i = 0 \\ \mathbb{R} \setminus \{0\} \text{ otherwise} \end{cases}$$

makes for a much cleaner proof. Not much changes, but it's easier to argue why $y \in U = \prod_{i \in \mathbb{N}} U_i$ can not be in \mathbb{R}^{∞} .