MAT327H1 F Homework Assigment 2

October 3, 2024

Question 1. Do readings.

Question 2.

Proof. Let X be a topological space, and $A \subset X$. Assume that $\forall x \in A$, $\exists U \subset X$ open s.t. $x \in U \subset A$. We show that A is open in X. For each $x \in A$, denote U_x as the open set s.t. $x \in U_x$ and $U_x \subset A$. Notice that $\forall x \in A$, $\{x\} \subset U_x$, so it must be that $A = \bigcup_{x \in A} \{x\} \subset \bigcup_{x \in A} U_x$. Conversely, we have assumed that each $U_x \subset A$, so it must follow that $\bigcup_{x\in A} U_x \subset A$. This implies that $A = \bigcup_{x\in A} U_x$, which is the union of sets which are open in X . Therefore, A is open in X . \Box

Question 3.

(a)

Proof. We show that \mathcal{T}_c is indeed a topology on X. If X is countable, then it is clear that \mathcal{T}_c is the discrete topology on X, as every set must have a countable complement. Suppose that X is nonempty and uncountable. $\emptyset \in \mathcal{T}_c$ by definition, and $X \in \mathcal{T}_c$ because $X - X = \emptyset$ is countable. Now suppose that U_{α} is an indexed family of open sets of X, with index set J. So $\forall \alpha$, $X - U_{\alpha}$ is countable. We show that $\bigcup_{\alpha \in J} U_{\alpha}$ is open in X. By DeMorgan's Law;

$$
X - \bigcup_{\alpha \in J} U_{\alpha} = \bigcap_{\alpha \in J} (X - U_{\alpha})
$$

and so of course, for any $\alpha_0 \in J$, $\bigcap_{\alpha \in J} (X - U_\alpha) \subset X - U_{\alpha_0}$ meaning that $\bigcap_{\alpha \in J} (X - U_\alpha)$ is a subset of a countable set, and is thus countable. Therefore $\bigcup_{\alpha \in J} U_{\alpha}$ is open in X. Now suppose that $U_i, 1 \leq i \leq n$ is a finite collection of open subsets of X. We show that $\bigcap_{i=1}^n U_i$ is open in X. Once again, by DeMorgan's Law;

$$
X - \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X - U_i)
$$

where each $X - U_i$ is countable. A finite union of countable sets is countable, so it follows that $\bigcap_{i=1}^n U_i$ is indeed open in X. We have shown that the three sufficient conditions hold for \mathcal{T}_c to be a topology on X, so we are done. \Box

(b) We claim that \mathcal{T}_{∞} is not a topology on X.

Proof. Let $X = \mathbb{R}$ be equipped with the infinite-complement "topology", and fix $x \in \mathbb{R}$. Consider the sets $U_1, U_2 \subset \mathbb{R}$ given by $U_1 = (-\infty, x)$, $U_2 = (x, \infty)$. $U_1^c = [x, \infty)$ and $U_2^c = (-\infty, x]$ are both infinite, so indeed $U_1, U_2 \in \mathcal{T}_{\infty}$. However, $U_1 \cup U_2$ is not open in R under this topology, as the complement is finite; $(U_1 \cup U_2)^c = ((-\infty, x) \cup (x, \infty))^c$ = $(\mathbb{R} - \{x\})^c = \{x\}.$ Therefore \mathcal{T}_{∞} fails (in this case) to satisfy that arbitrary unions of open sets are open, and is thus not a topology. \Box

Question 4.

(a)

Proof. Suppose that $\{\mathcal{T}_{\alpha}\}\$ is a family of topologies on X. We show that $\bigcap_{\alpha}\mathcal{T}_{\alpha}$ is also a topology on X.

By definition of a topology we have that $\forall \mathcal{T} \in \{\mathcal{T}_{\alpha}\}, X \in \mathcal{T}$ and $\emptyset \in \mathcal{T}$. Therefore $X \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$ and $\emptyset \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$.

Next, let U_β be a collection of subsets of X s.t. $\forall \beta, U_\beta \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$. We show that $\bigcup_{\beta} U_{\beta} \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$. Firstly, since $\forall \beta, U_{\beta} \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$, it follows that $\forall \beta, U_{\beta} \in \mathcal{T}_{\alpha}$ for every α . Since $U_{\beta} \in \mathcal{T}_{\alpha}$ for every α , $\bigcup_{\beta} U_{\beta} \in \mathcal{T}_{\alpha}$ for every α , which follows from the fact that each \mathcal{T}_{α} is a topology. Therefore, $\bigcup_{\beta} U_{\beta} \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$.

Finally, let U_i , $1 \leq i \leq n$ be a finite collection of subsets of X s.t. $U_i \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$. Then each $U_i \in \mathcal{T}_{\alpha}$ for every α . Since each \mathcal{T}_{α} is a topology, we know that $\bigcap_i U_i \in \mathcal{T}_{\alpha}$ for each α . Therefore, $\bigcap_i U_i$ ∈ $\bigcap_\alpha \mathcal{T}_\alpha$ as needed.

This shows that indeed $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ is a topology on X.

 \Box

(b)

Proof. We claim that $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ is the unique largest topology contained in all of the \mathcal{T}_{α} 's. We have already verified in part (a) of the question that this is indeed a topology on X . First we show that it is the largest, meaning that if \mathcal{T}' is another topology on X which is contained in all the \mathcal{T}_{α} 's, we show that $\bigcap_{\alpha}\mathcal{T}_{\alpha}\supset\mathcal{T}'$. Let $U\in\mathcal{T}'$. Since \mathcal{T}' is contained in all the \mathcal{T}_{α} 's, it must be that \mathcal{T}' is also contained in their intersection, $\bigcap_{\alpha} \mathcal{T}_{\alpha}$. To show uniqueness, suppose there are two largest topologies contained in all the \mathcal{T}_{α} 's; \mathcal{T}_1 and \mathcal{T}_2 . It then follows that $\mathcal{T}_1 \subset \mathcal{T}_2$ and $\mathcal{T}_2 \subset \mathcal{T}_1$, which implies that $\mathcal{T}_2 = \mathcal{T}_1$ - not unique. This shows that indeed $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ is the unique largest topology contained in all of the \mathcal{T}_{α} 's.

Now we show that there exists a smallest topology containing all of the \mathcal{T}_{α} 's. Define the collection $S = \bigcup_{\alpha} \mathcal{T}_{\alpha}$, which is a collection of subsets of X whose union is X. Using S, define the topology \mathcal{T}_s to be the collection of all unions of finite intersections of elements of S. In the textbook, this is called the topology generated by the subbasis S . Let us check that this is indeed a topology on X. It is enough to check that the collection $\mathcal B$ of all finite intersections of elements of $\mathcal S$ is a basis, from which it will follow by a theorem proven in class (Lemma 13.1 in the textbook) that the collection of all unions of elements of $\mathcal B$ is a topology - which is of course the topology $\mathcal T_s$.

Since the union of elements of S is X, we must have that for each $x \in X$, there is at least one $B \in \mathcal{B}$ containing x. Now suppose that $x \in B_1 \cap B_2$, where $B_1, B_2 \in \mathcal{B}$. Since both B_1 and B_2 are finite intersections of elements of S, so is the intersection $B_1 \cap B_2$. This means that the set $B_3 = B_1 \cap B_2$ is itself a basic set which is of course contained in itself, showing that $\mathcal B$ is indeed a basis - and thus $\mathcal T_s$ is indeed a topology.

Now we show that \mathcal{T}_s is the smallest topology containing all the $\{\mathcal{T}_{\alpha}\}'$'s. Let \mathcal{T}'' be another topology containing all the $\{\mathcal{T}_{\alpha}\}$'s, and let $U \in \mathcal{T}_{s}$. We show that $U \in \mathcal{T}''$. Since \mathcal{T}'' contains all of the $\{\mathcal{T}_{\alpha}\}'$'s, it must also contain all of the unions of finite intersections of elements (open sets) in the collection $\bigcup_{\alpha} \mathcal{T}_{\alpha}$. This follows from the assumption that \mathcal{T}'' is a topology. Since U is open in \mathcal{T}_s , it is a union of basic sets, and the basic sets are finite intersections of elements of $\bigcup_{\alpha} \mathcal{T}_{\alpha}$, meaning that U is a union of finite intersections of elements of $\bigcup_{\alpha} \mathcal{T}_{\alpha}$ (this is also obvious from the definition of topology generated by the subbasis S . So $U \in \mathcal{T}''$.

To show uniqueness, suppose that there exists a different smallest topology containing all of the $\{\mathcal{T}_{\alpha}\}'$'s, call it \mathcal{T}''' . So by this assumption, $\mathcal{T}_{s} \supset \mathcal{T}'''$, but from what we have already shown, $\mathcal{T}_s \subset \mathcal{T}'''$ so it follows that \mathcal{T}_s is unique. \Box

(c) We use what we have shown in the previous part. The largest topology contained in both \mathcal{T}_1 and \mathcal{T}_2 is $\mathcal{T}_1 \cap \mathcal{T}_2 = \{ \emptyset, X, \{a\} \}$. Following the same notation as in part (b), for the smallest topology containing both \mathcal{T}_1 and \mathcal{T}_2 , we have $\mathcal{S} = \mathcal{T}_1 \cup \mathcal{T}_2 =$ $\{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}\}\$, so $\mathcal{B} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\$. And the set of all unions of elements in \mathcal{B} is then $\mathcal{T}_s = {\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}}.$

Question 5.

(a)

Proof. Denote $\mathcal{B}_{\mathbb{Q}} = \{(a, b) \mid a < b, a, b \in \mathbb{Q}\}$. To show that $\mathcal{B}_{\mathbb{Q}}$ is a basis for the standard topology on R, it suffices to show that $\mathcal{B}_{\mathbb{Q}}$ satisfies the assumptions on C in the following lemma:

Let X be a topological space. Suppose that $\mathcal C$ is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of C such that $x \in C \subset U$. Then C is a basis for the topology of X.

This lemma was proven in class, and is stated as Lemma 13.2 in the textbook. So let $x \in \mathbb{R}$, and let U be an open set containing x, under the standard topology on R. Let $(a_0, b_0) \subset \mathbb{R}$ where $a_0 < b_0 \in \mathbb{R}$ be a basis element (in the standard topology on \mathbb{R}) containing x which is contained in U. We know such a set (a_0, b_0) exists because the standard topology on $\mathbb R$ is generated by basic sets of this form.

So, it follows that $x > a_0 \wedge x < b_0$, so there exists $p_1, q_1 \in \mathbb{Q}$ s.t. $p_1 \in (a_0, x) \wedge q_1 \in (x, b_0)$ (because the rationals are dense in the reals). So the basis element $B = (p_1, q_1) \in \mathcal{B}_{\mathbb{Q}}$ contains x , and is contained in U , as needed.

So, the assumptions of Lemma 13.2 are satisfied, which shows that $\mathcal{B}_{\mathbb{Q}}$ is a basis for the standard topology on R. \Box

(b)

Proof. First we show that the collection is indeed a basis for some topology on R. For any $x \in \mathbb{R}$ there surely exists $a, b \in \mathbb{Q}$ s.t. $x \in [a, b)$. Just take any $a < x < b$. Next, notice that the (non-empty) intersection of two basic sets is another basic set. Given $c < d, e < f \in \mathbb{Q}$, consider $[c, d) \cap [e, f]$. The intersection is simply $[\max\{c, e\}, \min\{d, f\}],$ which is another basic set. So if x is contained in the intersection of two basic sets, it is surely contained in a basic set which is a subset of the previous intersection, as the intersection is a basic set! (and of course fits inside itself). So the collection satisfies the definition of being a basis for some topology on R.

Now we show that the topology it generates (call it \mathcal{T}) is different from the lower limit topology, which we will denote by \mathcal{T}_{ℓ} . Consider the open set $[\pi, 4) \in \mathcal{T}_{\ell}$. We show that $[\pi, 4) \notin \mathcal{T}$. To do this, we can show that $\exists x \in [\pi, 4)$ where there is no basic set (in the basis which generates $\mathcal T$) that contains x and is contained in $[\pi, 4)$. So suppose that $[p, q)$ is some basic set containing $x = \pi/4$, where $p < q \in \mathbb{Q}$. So we cannot have $p = x$, and also we cannot have $p < x$ because then $[p, q) \not\subset [\pi, 4)$. So $p > x$. But then $x \notin [p, q)$, so we conclude that such a basic set does not exist. Therefore, $(\pi, 4) \notin \mathcal{T}$, implying that the topology generated by this basis is indeed different from the lower limit topology on R. \Box

Question 6.

Proof. (\Longleftarrow) We show that if f is constant or finite-to-one, then f must be continuous.

Let $U \subset Y$ open, meaning that $Y - U$ is either finite or all of Y. If it is all of Y, then there is not much to show in either case as this would imply $U = \emptyset$ and $f^{-1}(\emptyset) = \emptyset$, which is open in X. Let U be non-empty, open in Y, then $Y - U$ must be finite, and we may denote it as $Y - U = \{y_1, \ldots, y_n\}$ for some $n \in \mathbb{N}$. If f is constant, then for some $y_0 \in Y$, let $f(x) = y_0 \,\forall x \in X$. Then if $y_0 \notin U$, then $f^{-1}(Y - U) = X$, which is open in X. If $y_0 \in U$ then $f^{-1}(Y - U) = f^{-1}(Y) - f^{-1}(U) = Y - Y = \emptyset$, which is also open in X. In either case, f is continuous. Now suppose that f is finite-to-one. Then for each point $y_i \in Y - U$ there exist finitely many $x_{i1}, \ldots, x_{in} \in X$ s.t. $f(x_{ij}) = y_i \in Y - U$, $1 \leq j \leq n$, which implies the set $f^{-1}(Y-U)$ is finite. But recall from HW1 that $f^{-1}(Y-U) = f^{-1}(Y) - f^{-1}(U) = X - f^{-1}(U)$, meaning $X - f^{-1}(U)$ is finite and thus $f^{-1}(U)$ is open in X. So f is continuous.

 (\Longrightarrow) Now we show that if f is continuous, f must be constant or finite-to-one. Here we may assume that X is infinite. If it were not, every function $g: X \to Y$ would be finite-to-one, so there would be nothing to show. We will proceed by showing the contrapositive statement; suppose that f is neither constant nor finite-to-one and show that f cannot be continuous. In other words, assume that $\exists y_0 \in Y$ s.t. $f^{-1}(\{y_0\})$ is infinite, and $\exists x_1, x_2 \in X$, $x_1 \neq x_2$ s.t. $f(x_1) \neq f(x_2)$. Now consider the open set $Y - \{y_0\} \subset Y$, which is open because the complement $\{y_0\}$ is finite. Notice that $f^{-1}(Y - \{y_0\}) = f^{-1}(Y) - f^{-1}(\{y_0\}) = X - f^{-1}(\{y_0\})$. Unless $X - f^{-1}(\{y_0\})$ is empty, it cannot be open as its complement, $f^{-1}(\lbrace y_0 \rbrace)$ is assumed to be infinite. If the set $X - f^{-1}(\{y_0\})$ were empty, then $f^{-1}(\{y_0\}) = X$, meaning that f must be constant, which contradicts our assumption that f is non-constant. Therefore the set $X - f^{-1}(\{y_0\})$ is not open, implying that f cannot be continuous. This completes the proof. \Box