1. (a) Suppose $a \in A_0$. Since

$$f^{-1}(f(A_0)) = \{x \in A : f(x) \in f(A_0)\}$$

and $a \in A$ satisfies $f(a) \in f(A_0)$, we have $a \in f^{-1}(f(A_0))$, and thus $A_0 \subseteq f^{-1}(f(A_0))$.

Suppose *f* is moreover injective and $a \in f^{-1}(f(A_0))$. Then $f(a) \in f(A_0)$, meaning there exists $x \in A_0$ such that f(a) = f(x). By injectivity, a = x, so $a \in A_0$. Thus $f^{-1}(f(A_0)) \subseteq A_0$, so we have equality if *f* is injective.

(b) Suppose $b \in f(f^{-1}(B_0))$. Then b = f(a) for some $a \in f^{-1}(B_0)$. Since

$$f^{-1}(B_0) = \{ x \in A : f(x) \in B_0 \},\$$

 $b = f(a) \in B_0$. Thus $f(f^{-1}(B_0)) \subseteq B_0$.

Suppose f is moreover surjective and $b \in B_0$. Then by surjectivity there exists $a \in A$ such that f(a) = b. Clearly $a \in f^{-1}(B_0)$, so $b = f(a) \in f(f^{-1}(B_0))$. Thus $B_0 \subseteq f(f^{-1}(B_0))$, so equality holds if f is surjective.

- 2. (a) Suppose $B_0 \subseteq B_1$ and $a \in f^{-1}(B_0)$. By definition, $f(a) \in B_0 \subseteq B_1$. Thus $a \in f^{-1}(B_1)$, showing that $f^{-1}(B_0) \subseteq f^{-1}(B_1)$.
 - (b) Suppose a ∈ f⁻¹(B₀∪B₁). By definition f(a) ∈ B₀∪B₁; without loss of generality assume f(a) ∈ B₀. Then a ∈ f⁻¹(B₀) ⊆ f⁻¹(B₀) ∪ f⁻¹(B₁), showing that f⁻¹(B₀ ∪ B₁) ⊆ f⁻¹(B₀) ∪ f⁻¹(B₁). Conversely suppose a ∈ f⁻¹(B₀) ∪ f⁻¹(B₁); without loss of generality assume a ∈ f⁻¹(B₀). Then f(a) ∈ B₀ ⊆ B₀ ∪ B₁, meaning a ∈ f⁻¹(B₀ ∪ B₁). Thus f⁻¹(B₀) ∪ f⁻¹(B₁) ⊆ f⁻¹(B₀ ∪ B₁), so equality holds.
 - (c) $a \in f^{-1}(B_0 \cap B_1)$ is equivalent to $f(a) \in B_0 \cap B_1$. This occurs if and only if $f(a) \in B_0$ and $f(a) \in B_1$, or $a \in f^{-1}(B_0)$ and $a \in f^{-1}(B_1)$, respectively. Therefore $a \in f^{-1}(B_0 \cap B_1)$ if and only if $a \in f^{-1}(B_0) \cap f^{-1}(B_1)$, so $f^{-1}(B_0 \cap B_1) = f^{-1}(B_0) \cap f^{-1}(B_1)$, as desired.
 - (d) $a \in f^{-1}(B_0 B_1)$ is equivalent to $f(a) \in B_0 B_1$, which we may write as $f(a) \in B_0$ and $f(a) \notin B_1$, or $a \in f^{-1}(B_0)$ and $a \notin f^{-1}(B_1)$. Therefore $a \in f^{-1}(B_0 B_1)$ if and only if $a \in f^{-1}(B_0) f^{-1}(B_1)$.
 - (e) Suppose $A_0 \subseteq A_1$ and $b \in f(A_0)$. Then b = f(a) for some $a \in A_0$. By the inclusion, a is moreover in A_1 , so b = f(a) implies $b \in f(A_1)$. Therefore $f(A_0) \subseteq f(A_1)$, as desired.
 - (f) Suppose $b \in f(A_0 \cup A_1)$. Then b = f(a) for some $a \in A_0 \cup A_1$; without loss of generality assume $a \in A_0$. Then b = f(a) implies $b \in f(A_0) \subseteq f(A_0) \cup f(A_1)$, showing that $f(A_0 \cup A_1) \subseteq f(A_0) \cup f(A_1)$.

Conversely if $b \in f(A_0) \cup f(A_1)$, assume without loss of generality that $b \in f(A_0)$. Then b = f(a) for some $a \in A_0$. Since $A_0 \subseteq A_0 \cup A_1$, we additionally have $a \in A_0 \cup A_1$, so b = f(a) means that $b \in f(A_0 \cup A_1)$. Therefore $f(A_0) \cup f(A_1) \subseteq f(A_0 \cup A_1)$, showing that equality holds.

(g) Suppose $b \in f(A_0 \cap A_1)$. Then b = f(a) for some $a \in A_0 \cap A_1$. In particular, $a \in A_0$ and $a \in A_1$, so b = f(a) shows that $b \in f(A_0)$ and $b \in f(A_1)$, respectively. Thus $b \in f(A_0) \cap f(A_1)$, so that $f(A_0 \cap A_1) \subseteq f(A_0) \cap f(A_1)$.

If *f* is moreover injective and $b \in f(A_0) \cap f(A_1)$, then $b = f(a_0)$ for some $a_0 \in A_0$ and $b = f(a_1)$ for some $a_1 \in A_1$. By injectivity $a_0 = a_1 \in A_0 \cap A_1$, so $b = f(a_0)$ means that $b \in f(A_0 \cap A_1)$. Therefore if *f* is injective, $f(A_0) \cap f(A_1) \subseteq f(A_0 \cap A_1)$, so equality holds.

(h) Suppose $b \in f(A_0) - f(A_1)$. Then $b \in f(A_0)$ and $b \notin f(A_1)$. Respectively, this means $b = f(a_0)$ for some $a_0 \in A_0$ and $b \neq f(a_1)$ for all $a_1 \in A_1$. If $a_0 \in A_1$ then $b = f(a_0)$ is a contradiction, so $a_0 \in A_0 - A_1$. Hence $b = f(a_0)$ implies $b \in f(A_0 - A_1)$, showing that $f(A_0) - f(A_1) \subseteq f(A_0 - A_1)$.

If *f* is moreover injective and $b \in f(A_0 - A_1)$, then b = f(a) for some $a \in A_0 - A_1$. Since $A_0 - A_1 \subseteq A_0$, we have $a \in A_0$, so $b \in f(A_0)$. Suppose there exists $a_1 \in A_1$ such that $b = f(a_1)$. Then by injectivity, $f(a) = f(a_1)$ implies $a = a_1$, but $a \notin A_1$ while $a_1 \in A_1$; a contradiction. Thus $b \neq f(a_1)$ for all $a_1 \in A$, meaning $b \notin f(A_1)$. Since $b \in f(A_0)$ and $b \notin f(A_1)$, we have $b \in f(A_0) - f(A_1)$. Therefore if *f* is injective, $f(A_0 - A_1) \subseteq f(A_0) - f(A_1)$, and equality holds by the previous paragraph.

3. (b) Let $\{B_{\alpha}\}_{\alpha \in J}$ be an arbitrary family of subsets of *B*.

Suppose
$$a \in f^{-1}\left(\bigcup_{\alpha \in J} B_{\alpha}\right)$$
. Then $f(a) \in \bigcup_{\alpha \in J} B_{\alpha}$; let $\alpha_0 \in J$ be such that $f(a) \in B_{\alpha_0}$. This means $a \in f^{-1}(B_{\alpha_0}) \subseteq \bigcup_{\alpha \in J} f^{-1}(B_{\alpha})$, showing that $f^{-1}\left(\bigcup_{\alpha \in J} B_{\alpha}\right) \subseteq \bigcup_{\alpha \in J} f^{-1}(B_{\alpha})$.

Conversely suppose $a \in \bigcup_{\alpha \in J} f^{-1}(B_{\alpha})$. Let $\alpha_0 \in J$ be such that $a \in f^{-1}(B_{\alpha_0})$. Then $f(a) \in B_{\alpha_0} \subseteq \bigcup_{\alpha \in J} B_{\alpha}$. This means $a \in f^{-1}\left(\bigcup_{\alpha \in J} B_{\alpha}\right)$. Therefore $\bigcup_{\alpha \in J} f^{-1}(B_{\alpha}) \subseteq f^{-1}\left(\bigcup_{\alpha \in J} B_{\alpha}\right)$, so equality holds by the previous paragraph.

(c) Let $\{B_{\alpha}\}_{\alpha \in J}$ be an arbitrary family of subsets of *B*.

 $a \in f^{-1}\left(\bigcap_{\alpha \in J} B_{\alpha}\right)$ is equivalent to $f(a) \in \bigcap_{\alpha \in J} B_{\alpha}$, which is equivalent to $f(a) \in B_{\alpha}$ for all $\alpha \in J$. By definition, this occurs if and only if $a \in f^{-1}(B_{\alpha})$ for all $\alpha \in J$, and equivalently $a \in \bigcap_{\alpha \in J} f^{-1}(B_{\alpha})$. Thus $f^{-1}\left(\bigcap_{\alpha \in J} B_{\alpha}\right) = \bigcap_{\alpha \in J} f^{-1}(B_{\alpha})$.

(f) Let $\{A_{\alpha}\}_{\alpha \in J}$ be an arbitrary family of subsets of *A*.

Suppose
$$b \in f\left(\bigcup_{\alpha \in J} A_{\alpha}\right)$$
. Then $b = f(a)$ for some $a \in \bigcup_{\alpha \in J} A_{\alpha}$. Let $\alpha_0 \in J$ be such that $a \in A_{\alpha_0}$.
Then $b = f(a)$ means $b \in f(A_{\alpha_0}) \subseteq \bigcup_{\alpha \in J} f(A_{\alpha})$. Therefore $f\left(\bigcup_{\alpha \in J} A_{\alpha}\right) \subseteq \bigcup_{\alpha \in J} f(A_{\alpha})$.

Conversely, if $b \in \bigcup_{\alpha \in J} f(A_{\alpha})$, then let $\alpha_0 \in J$ be such that $b \in f(A_{\alpha_0})$. This means b = f(a) for some $a \in A_{\alpha_0}$. Clearly $A_{\alpha_0} \subseteq [] A_{\alpha}$, so $a \in [] A_{\alpha}$. Now b = f(a) implies $b \in f(] A_{\alpha})$.

some
$$a \in A_{\alpha_0}$$
. Clearly $A_{\alpha_0} \subseteq \bigcup_{\alpha \in J} A_{\alpha}$, so $a \in \bigcup_{\alpha \in J} A_{\alpha}$. Now $b = f(a)$ implies $b \in f\left(\bigcup_{\alpha \in J} A_{\alpha}\right)$
Thus $\bigcup_{\alpha \in J} f(A_{\alpha}) \subseteq f\left(\bigcup_{\alpha \in J} A_{\alpha}\right)$, so equality holds.

(g) Let $\{A_{\alpha}\}_{\alpha \in J}$ be an arbitrary family of subsets of *A*.

Suppose
$$b \in f\left(\bigcap_{\alpha \in J} A_{\alpha}\right)$$
. Then $b = f(a)$ for some $a \in \bigcap_{\alpha \in J} A_{\alpha}$. In particular, $a \in A_{\alpha}$ for each $\alpha \in J$, so $b = f(a)$ shows that $b \in f(A_{\alpha})$ for every $\alpha \in J$. Thus $b \in \bigcap_{\alpha \in J} f(A_{\alpha})$, so $f\left(\bigcap_{\alpha \in J} A_{\alpha}\right) \subseteq \bigcap_{\alpha \in J} f(A_{\alpha})$.

Suppose f is moreover injective and $b \in \bigcap_{\alpha \in J} f(A_{\alpha})$. Then for every $\alpha \in J$, $b \in f(A_{\alpha})$, meaning there exists $a_{\alpha} \in A_{\alpha}$ such that $b = f(a_{\alpha})$. By injectivity, all these a_{α} must be the same; that is, for any $\alpha, \beta \in J$, $f(a_{\alpha}) = b = f(a_{\beta})$ implies $a_{\alpha} = a_{\beta}$. In particular, $a_{\alpha} \in \bigcap_{\alpha \in J} A_{\alpha}$ satisfies $b = f(a_{\alpha})$, showing that $b \in f\left(\bigcap_{\alpha \in J} A_{\alpha}\right)$. Therefore if f is injective then $\bigcap_{\alpha \in J} f(A_{\alpha}) \subseteq f\left(\bigcap_{\alpha \in J} A_{\alpha}\right)$, so

equality holds.