

Questions

You can still edit question content after the assessment has been distributed. Students will need to reload the assessment to see the changes.

Assignment description

Edit Preview

Solve and submit your solutions of the following problems. Note that the late policy is very strict - you will lose 5% for each hour that you are late. In other words, please submit on time!

Attach files i Formatting tips

Q1 Image/PDF question

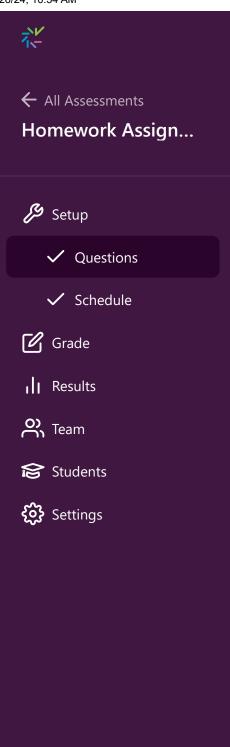
0 points

Read sections 51-55 in Munkres' textbook (Topology, 2nd edition). Remember that reading math isn't like reading a novel! If you read a novel and miss a few details most likely you'll still understand the novel. But if you miss a few details in a math text, often you'll miss everything that follows. So reading math takes reading and rereading and rerereading and a lot of thought about what you've read.

Q2 Image/PDF question

10 points

Show that the two definitions given in class for a covering $p:E \to B$ are equivalent:



Add questions | Homework Assignment 9 | Crowdmark

Definition 1. There is an open cover \mathcal{U} of B such that for every $U \in \mathcal{U}$ there is a discrete set D and a homeomorphism $\phi : U \times D \to p^{-1}(U)$ such that $p \circ \phi = \pi_U$, where $\pi_U : U \times D \to U$ is the projection on the first component.

Definition 2. There is an open cover \mathcal{U} of B such that for every $U \in \mathcal{U}$, its inverse image $p^{-1}(U)$ is a union of disjoint open sets U_{β} in E such that for each β the restriction of p to U_{β} is a homeomorphism of U_{β} with U.

Question

Edit **Preview**

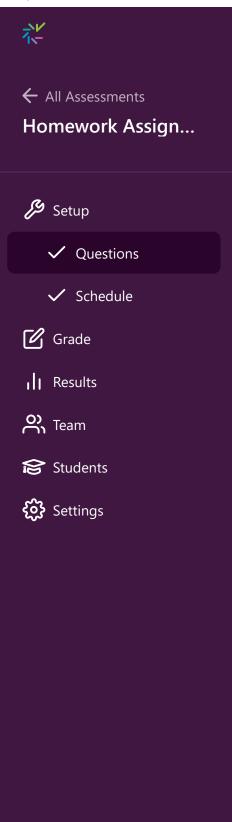
A space X is called "locally path connected" if for every $x \in X$ and every open set $U \subset X$ with $x \in U$, there is a path-connected open set V such that $x \in V \subset U$.

Show that if $p: (E, e_0) \to (B, b_0)$ is a covering, if (X, x_0) is path connected, locally path connected, and simply connected and if $\psi: (X, x_0) \to (B, b_0)$ is given, then there is a unique $\tilde{\psi}: (X, x_0) \to (E, e_0)$ such that $p \circ \tilde{\psi} = \psi$.

Hint. For every point $y \in X$ there is a path from x_0 to y and it can be lifted. But does this define $\tilde{\psi}(y)$ uniquely? Is the result continuous?

Saved

Bonus



Q4 Image/PDF question

If G and H are groups, we define a multiplication on G imes H by $(g_1,h_1)(g_2,h_2) = (g_1g_2,h_1h_2).$

A. (5 points) Verify that G imes H is again a group.

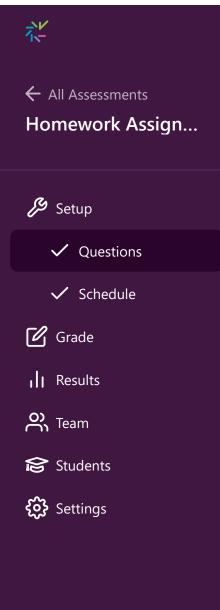
B. (10 points) If (X, x_0) and (y, y_0) are based spaces, we let $(X, x_0) \times (Y, y_0)$ be the based space $(X \times Y, (x_o, y_0))$. Show that $\pi_1((X, x_0) \times (Y, y_0)) \simeq \pi_1(X, x_0) \times \pi_1(Y, y_0)$. (People often ignore basepoints and write $\pi_1(X \times Y) = \pi_1(X) \times \pi_1(Y)$, but that's a bit less accurate).

Q5 Image/PDF question

10 points

Let 8 be the space that looks like the numeral 8, with the basepoint in the centre. Use the "Mexican cross" covering of 8 to show that $\pi_1(8)$ is equal, as a set, to the set of words of the form $a^{\alpha_1}b^{\beta_1}a^{\alpha_2}b^{\beta_2}\cdots a^{\alpha_n}b^{\beta_n}$, where *n* is a positive integer and α_i and β_i are non-zero integers for all *i*, except that α_1 is allowed to be 0 and β_n is allowed to be 0. (For simplicity we ignore the group structure on $\pi_1(8)$ here).

O Preview



 \bigotimes

Setup complete

You can begin grading after the due date