This is a preview of what students will see when they are submitting the assignment. Interactive features are disabled.

Q1 (0 points)

Read sections 26, and 27 in Munkres' textbook (Topology, 2nd edition). Remember that reading math isn't like reading a novel! If you read a novel and miss a few details most likely you'll still understand the novel. But if you miss a few details in a math text, often you'll miss everything that follows. So reading math takes reading and rereading and rerereading and a lot of thought about what you've read.

Also pre-read sections 51-55 of the same book.

Also, solve (but do not submit your solutions) problem 8 on page 171 and problem 5 on page 178 of the Munkres text.

Q2 (10 points)

(Munkres pp 171 ex 7)

Show that if $f: X \to Y$ is continuous where X is compact and Y is T_2 , then f is closed. Meaning, if $A \subset X$ is closed, then so is $f(A) \subset Y$.

Q3 (20 points)

(Munkres pp 171 ex 9)

Let X and Y be topological spaces, and let $A \subset X$ and $B \subset Y$ be compact subsets thereof. Let $W \subset X \times Y$ be an open set such that $A \times B \subset W$. Show that there is an open rectangle $U \times V \subset X \times Y$ such that $A \times B \subset U \times V \subset W$.

Maybe you want to start with the case where X is a single point, and then reach to a single point and a little neighborhood thereof, and then do the full thing.

Q4 (20 points)

(Munkres pp 177 ex 2)

Let X be a metric space and let $A \subset X$ be non-empty. Let $d(x, A) := \inf_{a \in A} d(x, a)$ and let $U_{\epsilon}(A) := \{x : d(x, A) < \epsilon\}.$

(a) Show that d(x,A)=0 iff $x\in ar{A}.$

(b) Show that if A is compact, then d(x,A) = d(x,a) for some $a \in A$.

(c) Show that $U_{\epsilon}(A)$ is the union of all the ϵ -balls whose centres lie in A.

(d) If A is compact and $U \supset A$ is open, show that for some $\epsilon > 0$ we have that $U_{\epsilon}(A) \subset U$.

(e) Find a counterexample to the result in (d), if A is not assumed to be compact.

