This is a preview of what students will see when they are submitting the assignment. Interactive features are disabled.

Q1 (10 points)

(Munkres pp20 ex1)

Let $f: A \to B$. Let $A_0 \subset A$ and let $B_0 \subset B$.

(a) Show that $A_0 \subset f^{-1}(f(A_0))$ and that equality holds if f is injective.

(b) Show that $f(f^{-1}(B_0)) \subset B_0$ and that equality holds if f is surjective.

Q2 (40 points)

(Munkres pp20-21 ex2)

Let $f: A \to B$ and let $A_i \subset A$ and $B_i \subset B$ for i = 0, 1. Show that f^{-1} preserves inclusions, unions, intersections, and differences of sets:

(a) $B_0 \subset B_1 \implies f^{-1}(B_0) \subset f^{-1}(B_1).$ (b) $f^{-1}(B_0 \cup B_1) = f^{-1}(B_0) \cup f^{-1}(B_1).$ (c) $f^{-1}(B_0 \cap B_1) = f^{-1}(B_0) \cap f^{-1}(B_1).$ (d) $f^{-1}(B_0 \setminus B_1) = f^{-1}(B_0) \setminus f^{-1}(B_1).$

Yet show that f only preserves inclusions and unions:

 $\text{(e)} \ A_0 \subset A_1 \quad \Longrightarrow \quad f(A_0) \subset f(A_1).$

(f) $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$.

(g) $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$ and equality holds if f is injective.

(h) $f(A_0\setminus A_1)\supset f(A_0)\setminus f(A_1)$ and equality holds if f is injective.

Q3 (20 points)

(Munkres pp21 ex3)

Show that (b), (c), (f), and (g) of the previous questions hold for arbitrary unions and intersections (finite or infinite).

