
Dror Bar-Natan: Classes: 2007-08: Math 401 Polynomials, Equations, Fields:

Galois Theory Quick Reference

Goal. Some polynomials cannot be “solved” using +, −, ×, ÷
and n

√
.

Galois Theory. Roughly, there is a correspondence

{field extensions} The Fundamental←→
Theorem

{groups}
{extensions by roots} −→ {“solvable groups”}

splitting field of
3x5 − 15x+ 5

−→
the non-solvable

permutation group
S5

To do.

1. More on splitting fields.

2. Quick reminders on group theory.

3. Precise statement of the fundamental theorem.

4. Examples for the fundamental theorem.

5. On solvable groups: definition, basic properties, S5 is not
solvable.

6. “Extensions by radicals” correspond to solvable groups.

7. The splitting field of 3x5 − 15x+ 5 corresponds to S5.

8. Proof of the fundamental theorem.
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The Fundamental Theorem of Galois Theory. Let F be
a field of characteristic 0 and let E be a splitting field over
F . Then there is a bijective correspondence between the set
{K : E/K/F} of intermediate field extensions K lying between
F and E and the set {H : H < Gal(E/F )} of subgroups H of
the Galois group Gal(E/F ) of the original extension E/F :

{K : E/K/F} ↔ {H : H < Gal(E/F )}.
The bijection is given by mapping every intermediate extension
K to the subgroup Gal(E/K) of elements in Gal(E/F ) that
preserve K,

Φ : K 7→ Gal(E/K) := {g : E → E : g|K = I},
and reversely, by mapping every subgroup H of Gal(E/F ) to
its fixed field EH :

Ψ : H 7→ EH := {x ∈ E : ∀h ∈ H, hx = x}.
This correspondence has the following further properties:

� It is inclusion-reversing: if H1 ⊂ H2 then EH1
⊃ EH2

and
if K1 ⊂ K2 then Gal(E/K1) > Gal(E/K2).

� It is degree/index respecting: [E : K] = |Gal(E/K)| and
[K : F ] = [Gal(E/F ) : Gal(E/K)].

� Splitting fields correspond to normal subgroups: If K
in E/K/F is the splitting field of a polynomial in F [x]
then Gal(E/K) is normal in Gal(E/F ) and Gal(K/F ) ∼=
Gal(E/F )/Gal(E/K).
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