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Galois Theory Quick Reference

Goal. Some polynomials cannot be “solved” using +, —, X, +
and p .
Galois Theory. Roughly, there is a correspondence
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To do.

1. More on splitting fields.

2. Quick reminders on group theory.

3. Precise statement of the fundamental theorem.
4. Examples for the fundamental theorem.
5

. On solvable groups: definition, basic properties, S5 is not
solvable.

6. “Extensions by radicals” correspond to solvable groups.
7. The splitting field of 32®> — 15z 4+ 5 corresponds to Ss.

8. Proof of the fundamental theorem.
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The Fundamental Theorem of Galois Theory. Let F' be
a field of characteristic 0 and let E be a splitting field over
F. Then there is a bijective correspondence between the set
{K : E/K/F} of intermediate field extensions K lying between
F and E and the set {H : H < Gal(E/F)} of subgroups H of
the Galois group Gal(E/F) of the original extension E/F"

{K:E/K/F} <+ {H:H<Gal(E/F)}.
The bijection is given by mapping every intermediate extension

K to the subgroup Gal(E/K) of elements in Gal(E/F) that
preserve K,

®: K— Gal(E/K):={g: E— E:g|lg =1},
and reversely, by mapping every subgroup H of Gal(E/F) to
its fixed field Ey:

V: H—FEy:={ex€ E:VYhe H, hx =z}

This correspondence has the following further properties:

o It is inclusion-reversing: if H; C Hy then Ef, D Eg, and
if K1 C K5 then Gal(E/K7) > Gal(E/K>).

e It is degree/index respecting: [E : K] = | Gal(E/K)| and
[K : F] = [Gal(E/F) : Gal(E/K)].

e Splitting fields correspond to normal subgroups: If K
in E/K/F is the splitting field of a polynomial in F|x]
then Gal(E/K) is normal in Gal(E/F) and Gal(K/F)
Gal(E/F)/ Gal(E/K).
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