VasCalc Documentation - An example

From Drorbn
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This is an example of how to use VasCalc. We check the third Reidemeister move against an almost-invariant (not a technical term).

The Reidemeister 3 Move

We want to use VasCalc to verify the third Reidemeister move. This is meant as a small example of how to use the VasCalc package.

The first couple of steps are to load up VasCalc.

In[1]:= <<CDinterface.m
In[2]:= SetVasCalcPath["/home/zavosh/vc"];

Now we need to load the definitions of and as defined in Dror Bar-Natan's paper on Non-Associative Tangles[1]:

In[3]:= Phi = ASeries[1 + (1/24)*CD[Line[1], Line[2], Line[1, 2]] - (1/24)*CD[Line[2], Line[1], Line[1, 2]], 3, 0, 3]
Out[3]= ASeries[3, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», «JavaObject[vectorSpace.Coefficient]»}]


In[4]:= R = ASeries[1 + (1/2)CD[Line[1], Line[1]] + (1/8)CD[Line[1, 2], Line[1, 2]] + (1/48)CD[Line[1, 2, 3], Line[1, 2, 3]] , 2, 0]
Out[4]= ASeries[2, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», «JavaObject[ChordVector]», «JavaObject[ChordVector]»}]

Now we define the definition of . Where stands for our (pseudo) Vassiliev invariant and is the invariant of a braid on strands with a crossing on the strands and .


In[5]:= Clear[Z]
In[6]:= Z[B[k_],n_] /; k > 1 := Module[{ser, tbl}, ser = Nest[AddStrand[#, #[[1]]] &, Nest[DoubleStrand[#, 0] &, Phi, k - 2], n - k - 1]. Nest[AddStrand[#, #[[1]]] &, Nest[AddStrand[#, 0] &, R, k - 1], n - k - 1] . Nest[AddStrand[#, #[[1]]] &, Nest[DoubleStrand[#, 0] &, PermuteStrand[(Phi)^(-1), {{2, 3}}], k - 2], n - k - 1]; tbl = Table[i, {i, ser[[1]]}]; tbl = ReplacePart[tbl, k + 1, k]; tbl = ReplacePart[tbl, k, k + 1]; ASeries[tbl, ser[[3]]]]

Here we need to make an exception for the case because the above will not work:

In[7]:= Z[B[1], n_] := Module[{tbl, ser}, ser = Nest[AddStrand[#, #[[1]]] &, R, n - 2]; tbl = Table[i, {i, ser[[1]]}]; tbl = ReplacePart[tbl, 2, 1]; tbl = ReplacePart[tbl, 1, 2]; ASeries[tbl, ser[[3]]]]

Now we are ready to verify the move. If is an invariant of the Reidemeister three move we must have:

We calculate the right and left hand sides separately for and .

In[8]:= ll = Z[B[3], 6].Z[B[4], 6].Z[B[3], 6]
Out[8]= ASeries[{1, 2, 5, 4, 3, 6}, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», «JavaObject[ChordVector]», «JavaObject[ChordVector]»}]
In[9]:= rr = Z[B[4], 6].Z[B[3], 6].Z[B[4], 6]
Out[9]= ASeries[{1, 2, 5, 4, 3, 6}, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», «JavaObject[ChordVector]», «JavaObject[ChordVector]»}]


Now to compare:

In[10]:= CD[Reduce[ll - rr]]
Out[10]= 0

Voila!

References

  • [1] D. Bar-Natan, Non-Associative Tangles. Geometric Topology (proceedings of the Georgia International Topology Conference, W. H. Kazez ed.), 139-183, Amer. Math. Soc. and International Press, Providence, 1997.