Notes for AKT-140228/0:41:45: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Created page with "'''<math>(A^g)^h = A^{(gh)}</math> ?''' <center><math>\begin{align} (A^g)^h &= h^{-1}(g^{-1}Ag + g^{-1}\mathrm{d}g)h + h^{-1}\mathrm{d}h \\ &= \end{align} </math></center>")
 
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''<math>(A^g)^h = A^{(gh)}</math> ?'''
'''Showing ''''''<math>(A^g)^h = A^{(gh)}</math> '''




<center><math>\begin{align}
<center><math>\begin{align}
(A^g)^h &= h^{-1}(g^{-1}Ag + g^{-1}\mathrm{d}g)h + h^{-1}\mathrm{d}h \\
A^{(gh)} &= (gh)^{-1}A(gh) + (gh)^{-1}\mathrm{d}(gh) \\
&= (gh)^{-1}A(gh) + (gh)^{-1}\Big((\mathrm{d}g)h + g(\mathrm{d}h)\Big)\\
&=
&= (gh)^{-1}A(gh) + (gh)^{-1}(\mathrm{d}g)h + (gh)^{-1}g(\mathrm{d}h)\\
&= h^{-1}(g^{-1}Ag)h + h^{-1}(g^{-1}\mathrm{d}g)h + h^{-1}\mathrm{d}h\\
&= h^{-1}\Big(g^{-1}Ag + g^{-1}\mathrm{d}g\Big)h + h^{-1}\mathrm{d}h\\
&= (A^g)^h.

\end{align}
\end{align}
</math></center>
</math></center>

The equality shows that the action is a group action.

Latest revision as of 18:02, 26 July 2018

'Showing '


The equality shows that the action is a group action.