Notes for AKT-091006/0:11:24: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Choose basis <math>(X_a)</math>, <math>a \in \{1, 2, \cdots, \dim(\mathcal{G}) \}</math> for <math>\mathcal{G}</math>
Choose a basis <math>(X_a)^{\dim{\mathcal{G}}}_{a=1}</math> for <math>\mathcal{G}</math>
and basis <math>(e_a)</math>, <math>a \in \{1, 2, \cdots, \dim(R) \}</math> for <math>R</math>
and a basis <math>(e_{\alpha})^{\dim(R)}_{\alpha=1}</math> for <math>R</math>.


''Notation'':
Notation: Let <math>[X_a, X_b] = F_{a,b}^n X_n</math>, <math>F_{ab}^n \in \mathbb{Q}</math>
:<math>[X_a, X_b] = f_{a,b}^c X_c</math>, where <math>f_{ab}^c \in \mathbb{Q}</math> are the structure constants


<math><X_a, X_b> = t_{ab}</math>; <math>t^{ab}</math> is defined s.t. <math>t_{ab} \cdot t^{bc} = \delta_{ac}</math>
:<math>\left\langle X_a, X_b\right\rangle = t_{ab}</math>
::Symmetric: <math>t_{ab}=t_{ba}</math>
::Non-degenerate: <math>(t_{ab})</math> has an inverse, <math>(t^{ab})</math>, with <math>t_{ab} \cdot t^{bc} = \delta_{ac}</math>

Latest revision as of 12:20, 30 October 2011

Choose a basis for and a basis for .

Notation:

, where are the structure constants
Symmetric:
Non-degenerate: has an inverse, , with