Difference between revisions of "CMS Winter 2006 Session on Knot Homologies"

From Drorbn
Jump to: navigation, search
(Our Speakers)
Line 17: Line 17:
 
{{CMS 2006 Speaker|n=6|name=Robert Lipshitz|notes=Columbia|t=one|title=Some recent developments in Heegaard-Floer homology|abstract=We will discuss some recent developments in Heegaard-Floer homology-progress on making it combinatorial and attempts to generalize it.}}
 
{{CMS 2006 Speaker|n=6|name=Robert Lipshitz|notes=Columbia|t=one|title=Some recent developments in Heegaard-Floer homology|abstract=We will discuss some recent developments in Heegaard-Floer homology-progress on making it combinatorial and attempts to generalize it.}}
  
{{CMS 2006 Speaker|n=7|name=Scott Morrison|notes=Berkeley|t=half or one|title=TBA|abstract=TBA}}
+
{{CMS 2006 Speaker|n=7|name=Gad Naot|notes=Toronto|t=half|title=The Universal Khovanov Link Homology Theory - Extracting Algebraic Information|abstract=In this talk I will introduce the universal Khovanov link homology theory (<math>n=2</math>). This theory is developed using the full strength of the geometric formalism of Khovanov link homology theory and has many computational and theoretical advantages. The universal theory answers questions regarding the amount of algebraic information held within the complex associated to a link. It also answers questions regarding the extraction of this information by giving full control over the various TQFTs applied to the complex (along with control over other gadgets such as the various spectral sequences related to these TQFTs). After a brief overview and some reminders I will introduce the major tools and ideas used in developing the universal theory (such as surface classification, genus generating operators, complex isomorphisms and "promotions"). Then, I will present some of the advantages of such a theory, time permitting (more on the topic can be found at arXiv:math.GT/0603347).}}
  
{{CMS 2006 Speaker|n=8|name=Gad Naot|notes=Toronto|t=half|title=The Universal Khovanov Link Homology Theory - Extracting Algebraic Information|abstract=In this talk I will introduce the universal Khovanov link homology theory (<math>n=2</math>). This theory is developed using the full strength of the geometric formalism of Khovanov link homology theory and has many computational and theoretical advantages. The universal theory answers questions regarding the amount of algebraic information held within the complex associated to a link. It also answers questions regarding the extraction of this information by giving full control over the various TQFTs applied to the complex (along with control over other gadgets such as the various spectral sequences related to these TQFTs). After a brief overview and some reminders I will introduce the major tools and ideas used in developing the universal theory (such as surface classification, genus generating operators, complex isomorphisms and "promotions"). Then, I will present some of the advantages of such a theory, time permitting (more on the topic can be found at arXiv:math.GT/0603347).}}
+
{{CMS 2006 Speaker|n=8|name=Juan Ariel Ortiz-Navarro|notes=Iowa, maybe just Sat-Sun|t=half|title=Khovanov Homology & Reidemeister Torsion|abstract=The Reidemeister Torsion construction can be applied to the chain complex that is used to compute the Khovanov homology of a knot or a link. This defines a volume form on Khovanov homology. The volume form transforms correctly under Reidemeister moves to give an invariant volume on the Khovanov homology. We use this to study the invariants of knots.}}
  
{{CMS 2006 Speaker|n=9|name=Juan Ariel Ortiz-Navarro|notes=Iowa, maybe just Sat-Sun|t=half|title=Khovanov Homology & Reidemeister Torsion|abstract=The Reidemeister Torsion construction can be applied to the chain complex that is used to compute the Khovanov homology of a knot or a link. This defines a volume form on Khovanov homology. The volume form transforms correctly under Reidemeister moves to give an invariant volume on the Khovanov homology. We use this to study the invariants of knots.}}
+
{{CMS 2006 Speaker|n=9|name=Jake Rasmussen|notes=Princeton|t=one|title=Stable KR-homology of torus knots|abstract=Computer calculations suggest that the limiting behavior of the Khovanov homology of <math>T(m,n)</math> as <math>n\rightarrow\infty</math> is rather complicated. In contrast, the corresponding limit for the HOMFLY homology of <math>T(m,n)</math> is quite simple. I'll describe how to calculate this limit and explain why the result provides evidence for the presence of a symmetry in the HOMFLY homology.}}
  
{{CMS 2006 Speaker|n=10|name=Jake Rasmussen|notes=Princeton|t=one|title=Stable KR-homology of torus knots|abstract=Computer calculations suggest that the limiting behavior of the Khovanov homology of <math>T(m,n)</math> as <math>n\rightarrow\infty</math> is rather complicated. In contrast, the corresponding limit for the HOMFLY homology of <math>T(m,n)</math> is quite simple. I'll describe how to calculate this limit and explain why the result provides evidence for the presence of a symmetry in the HOMFLY homology.}}
+
{{CMS 2006 Speaker|n=10|name=Lev Rozansky|notes=UNC|t=one|title=Virtual knots, convolutions and a categorification of the <math>SO(2N)</math> Kauffman polynomial|abstract=This is a joint work with M. Khovanov. We present a categorification construction for the <math>SO(2N)</math> specialization of the Kauffman polynomial and prove its invariance under the first and second Reidemeister moves. The construction follows the Kauffman-Vogel alternating sign formula, which expresses the Kauffman polynomial of a link in terms of polynomials of 4-valent planar graphs. We define the matrix factorization associated to the 4-vertex as a convolution of a chain of two saddle morphisms, relating parallel and virtually crossing pairs of arcs.}}
  
{{CMS 2006 Speaker|n=11|name=Lev Rozansky|notes=UNC|t=one|title=Virtual knots, convolutions and a categorification of the <math>SO(2N)</math> Kauffman polynomial|abstract=This is a joint work with M. Khovanov. We present a categorification construction for the <math>SO(2N)</math> specialization of the Kauffman polynomial and prove its invariance under the first and second Reidemeister moves. The construction follows the Kauffman-Vogel alternating sign formula, which expresses the Kauffman polynomial of a link in terms of polynomials of 4-valent planar graphs. We define the matrix factorization associated to the 4-vertex as a convolution of a chain of two saddle morphisms, relating parallel and virtually crossing pairs of arcs.}}
+
{{CMS 2006 Speaker|n=11|name=Paul Seidel|notes=MIT, in Saturday and Sunday morning|t=one|title=Localization in Floer homology and applications|abstract=I will explain how to construct localization maps for Z/2-actions in Floer theory, and how this explains the relation between the symplectic version of Khovanov homology and Ozsvath-Szabo theory.
 
+
{{CMS 2006 Speaker|n=12|name=Paul Seidel|notes=MIT, in Saturday and Sunday morning|t=one|title=Localization in Floer homology and applications|abstract=I will explain how to construct localization maps for Z/2-actions in Floer theory, and how this explains the relation between the symplectic version of Khovanov homology and Ozsvath-Szabo theory.
+
  
 
:This is joint work with Ivan Smith.}}
 
:This is joint work with Ivan Smith.}}
  
{{CMS 2006 Speaker|n=13|name=Robb Todd|notes=Iowa, maybe just Sat-Sun|t=half|title=Khovanov Homology and the Twist Number of Alternatinng Knots|abstract=O. Dasbach and X.-S. Lin showed that the sum of the absolute value of the second and penultimate coefficient of the Jones polynomial of an alternating knot is equal to the twist number of the knot. Here we give a new proof of their result using a variant of Khovanov's homology that was defined by O. Viro for the Kauffman bracket. The proof is by induction on the number of crossings using the long exact sequence in Khovanov homology corresponding to the Kauffman bracket skein relation.}}
+
{{CMS 2006 Speaker|n=12|name=Robb Todd|notes=Iowa, maybe just Sat-Sun|t=half|title=Khovanov Homology and the Twist Number of Alternatinng Knots|abstract=O. Dasbach and X.-S. Lin showed that the sum of the absolute value of the second and penultimate coefficient of the Jones polynomial of an alternating knot is equal to the twist number of the knot. Here we give a new proof of their result using a variant of Khovanov's homology that was defined by O. Viro for the Kauffman bracket. The proof is by induction on the number of crossings using the long exact sequence in Khovanov homology corresponding to the Kauffman bracket skein relation.}}
  
 
==Our Schedule==
 
==Our Schedule==
Line 97: Line 95:
 
|- bgcolor=yellow
 
|- bgcolor=yellow
 
|10:15-11:15
 
|10:15-11:15
|Morrison (1)
+
|Knot Homologies: Open discussion
 
|-
 
|-
 
|11:15-12:05
 
|11:15-12:05

Revision as of 15:08, 1 December 2006

This is an information page for the session on Knot Homologies in the Canadian Mathematical Society Winter 2006 Meeting in Toronto.

Contents

Our Speakers

Our Schedule

Still tentative!!!

Saturday December 9, 2006

09:00-09:50 Plenary Lecture: Karen Smith
10:15-12:15 Lipshitz (1), Seidel (1)
13:45-14:35 Prize Lecture: Andrew Granville
16:00-18:00 Collin (1), Kamnitzer (1)
18:00-18:30 Adrien-Pouliot Lecture
18:30-19:30 Participant's Social
19:30-20:30 Public Lecture: V. Kumar Murty

Sunday December 10, 2006

08:30-10:00 Khovanov (1), Caprau (1/2)
10:15-11:15 Rozansky (1)
11:15-12:05 Plenary Lecture: Susan Tolman
13:45-14:35 Doctoral Prize Lecture
14:45-15:35 Plenary Lecture: Dimitri Shlakhtenko
16:00-17:30 Ortiz-Navarro (1/2), Naot (1/2), Todd (1/2)
18:00-19:00 Reception
19:00-22:00 Banquet

Monday December 11, 2006

08:30-10:00 Rasmussen (1), Lee (1/2)
10:15-11:15 Knot Homologies: Open discussion
11:15-12:05 Plenary Lecture: Dmitry Dolgopyat
13:45-14:35 Plenary Lecture: Shmuel Weinberger
14:45-15:45 Knot Homologies: Open discussion
16:00-18:00 Knot Homologies: Open discussion

Letters to the Speakers

Another Accommodation Note

A good further list of places to stay is at http://www.fields.utoronto.ca/resources/housing.html.

5th Letter

Dear Speakers,

I've posted a tentative schedule for the upcoming CMS meeting in Toronto
on our session's web site, at
http://katlas.math.toronto.edu/drorbn/index.php?title=CMS

Please find yourself there and make sure you are ok with it! Poor Mikhail
and Jake are scheduled for early morning talks; this perhaps can be
changed, but I think they (and the rest of us) will survive this and gain
some free time Monday afternoon which you can use either to fly home
earlier or to join for an "open discussion". I hope you'll all choose the
latter; I think there will be value to that discussion.

Reminders: Travel Arrangements!! Hotels before Nov 15! Reduced rate
registration by Nov 5! Tell me about your technology needs!

Best,

Dror.

4th Letter

Dear Speakers,

A few reminders regarding the upcoming "Knot Homologies" session in
Toronto -

1. You need to buy tickets and arrange accommodations! See my "2nd Letter"
at http://katlas.math.toronto.edu/drorbn/index.php?title=CMS and also the
"Accommodations Note" there.

2. The deadline for reduced-rate registration is November 5. Please
register and keep the receipt, though remember that our budget is tiny so
it won't cover much more than the registration...

3. If you'll need any special equipment for your talk, my deadline to
request it is Friday November 3rd, so please tell me about it soon. In our
lecture room we will have an overhead projector, a screen and a
white board. Computer projectors must be booked now.

4. MOST IMPORTANT: If you haven't submitted your title and abstract yet,
please do so ASAP, and also send a copy directly to me. I need to prepare
the schedule for our session by next Friday (Nov 3), and my plan is to do
it next Wednesday. It will be better if I'll know what you are planning to
talk about! This applies to Caprau, Collin, Lee, Morrison, Naot,
Ortiz-Navarro, Rasmussen, Rozansky and Todd.

Your Obedient Servant,

Dror.

Accommodations Note

If you're still looking for accommodations, I would definitely take a look at http://www.baldwininn.com/. A new place so no feedback yet, but the location is fantastic.

3rd Letter

Shalom Speakers and Potential Speakers,

A quick reminder - the powers above me request that you submit your
abstract by October 15 (i.e., in about two days) at
http://www.cms.math.ca/Events/winter06/announce.e#abs_sub. The punishment
for not doing so will be that your abstract may not appear in the official
program. This of course will not prevent it from appearing on our
"internal" wiki site.

Also, visit our internal site at
http://katlas.math.toronto.edu/drorbn/index.php?title=CMS
for the most up-to-date list of speakers.

Lehitraot,

Dror.

2nd Letter

Dear Speakers and Potential Speakers,

A few more words about the CMS Winter 2006 Session on Knot Homologies in
Toronto on December 9-11 -

As I wrote on the initial invitation, we only have a tiny budget to run
this session - about $3,000 to divide between around 10 speakers. This
means very little for each one of you, I'm afraid. If this scares you out,
say so now and don't hold a grudge against me later!

On the other hand, I think we have an excellent group of speakers (see
http://katlas.math.toronto.edu/drorbn/index.php?title=CMS), so the
meeting itself should be FUN.

Now for the technicalities -

1. The powers above me request that you submit your abstract by October 15
(i.e., in about two weeks) at
http://www.cms.math.ca/Events/winter06/announce.e#abs_sub. The punishment
for not doing so will be that your abstract may not appear in the official
program. This of course will not prevent it from appearing on our
"internal" wiki site.

2. You are requested to register at
http://www.cms.math.ca/Events/winter06/announce.e#registration by November
5. Please do so and pay the registration fees as on the web, and note that
I after I refund those I'll have a lot less money to play with.

3. Find yourself a hotel room as on
http://www.cms.math.ca/Events/winter06/announce.e#accommodation and book
it by November 15. If you need my help with choices or with further
choices, you know how to reach me. There are also much cheaper and
lower-grade places available. Scott Morrison stayed in one of those three
times and seemed happy and undamaged. His place is at
http://www.affordacom.com/home.htm; it is within the lovely Kensington
Market neighborhood, within 5 minutes walk from my house and from the math
department and the Fields Institute, and within 20 minutes walk from the
conference site.

4. Book your flights and let me know their dates/times. No deadline.

Best,

Dror.

1st Letter

Shalom ***,

I'd like to invite you to give a one hour talk in the topology/knot theory
session of the Winter Meeting of the Canadian Mathematical Society, to be
held in Toronto on December 9-11, 2006.

Note that despite the wide title of our session, I plan to make it quite
focused, with most talks on or around knot homologies and with a relatively
small (10-12) number of speakers. So you should think of the meeting more
as a "workshop" than as a "session in an AMS conference". Though to cut
costs, I'm presently inviting only people from the northeast, which is
generalized to also include Chicago, North Carolina and eastern Canada.

We will have around $3,000 overall to support the speakers. This is not
enough to pay for all expenses, but you can assume that at least some of
your expenses will be covered.

Toronto's the second nicest city in the world and I'm sure you'll enjoy the
meeting!

Lehitraot,

Dror.

0th Letter

Shalom Friends,

This is not an invitation nor an announcement, just a call for your
opinion. I was asked to organize a session in the Canadian Mathematical
Society (CMS) meeting in Toronto, Dec 9-11 2006. I didn't accept or
decline yet, but I will do so in 2-3 days and I'd like to get your
opinions before deciding.

My idea is to "hijack" the session and to organize it as a mini-workshop
similar in style and content to the workshop Olivier Collin organized a
few months ago in Montreal (thus the people receiving this message are the
east-coast speakers from Montreal, and forgive me if I forgot anyone).

More details: We'll have time for 8-9 one hour talks; a part of that
(maybe 2 hours) will have to go to other parts of topology. We'll be able
to split some of those to two half-hour talks (in fact, this seems to be
the standard in CMS meetings, but I'd like to have as many longer talks as
possible). I/we will have $2,500 from the CMS plus a small amount from my
grant. So we will have to restrict to people from the east coast and even
they may not get full support.

So what do you think? Should I bother? Would you come? At this time
neither this letter nor your response to it will be binding in any way.

Lehitraot,

Dror.