12-267/Derivation of Euler-Lagrange

From Drorbn
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Disclamer: This is a student prepared note based on the lecure of Tuesday October 2nd.

For a function defined on to be an extremum of , it must be that for any function defined on that preserves the endpoints of (that is, and ), we have .

Let signify F differentiated with respect to its nth variable.

(integrating by parts)

Due to the constraints of and , .

As this must be equal to 0 for all h satisfying the endpoint constraints, we must have that , or in other terms, .

Special cases (without derivations):

In the case that F does not depend on y', we have

In the case that F does not depend on y, we have

In the case that F does not depend on x, we have