Difference between revisions of "12-240/Classnotes for Tuesday September 25"

From Drorbn
Jump to: navigation, search
(Definition)
Line 5: Line 5:
  
 
== Definition ==
 
== Definition ==
Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: (+): VxV->V, (.): FxV->V
+
Let F be a field. A vector space V over F is a set V of vectors with special element O ( of V) and two operations: (+): VxV->V, (.): FxV->V
  
 
VxV={(v,w): v,w <math>\in\!\,</math> V}
 
VxV={(v,w): v,w <math>\in\!\,</math> V}
Line 30: Line 30:
  
 
VS8 <math>\forall\!\,</math> a, b <math>\in\!\,</math> F,  <math>\forall\!\,</math> x <math>\in\!\,</math> V:  (a + b)x = ax + bx
 
VS8 <math>\forall\!\,</math> a, b <math>\in\!\,</math> F,  <math>\forall\!\,</math> x <math>\in\!\,</math> V:  (a + b)x = ax + bx
 
  
 
== Examples ==
 
== Examples ==

Revision as of 05:38, 7 December 2012

Today's class dealt with the properties of vector spaces.


Contents

Definition

Let F be a field. A vector space V over F is a set V of vectors with special element O ( of V) and two operations: (+): VxV->V, (.): FxV->V

VxV={(v,w): v,w \in\!\, V}

FxV={(c,v): c \in\!\, F, v \in\!\, V}

Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv

Such that

VS1 \forall\!\, x, y \in\!\, V: x+y = y+x

VS2 \forall\!\, x, y, z \in\!\, V: x+(y+z) = (x+y)+z

VS3 \forall\!\, x \in\!\, V: 0 ( of V) +x = x

VS4 \forall\!\, x \in\!\, V, \exists \!\, V \in\!\, V: v + x= 0 ( of V)

VS5 \forall\!\, x \in\!\, V, 1 (of F) .x = x

VS6 \forall\!\, a, b \in\!\, F, \forall\!\, x \in\!\, V: (ab)x = a(bx)

VS7 \forall\!\, a \in\!\, F, \forall\!\, x, y \in\!\, V: a(x + y)= ax + ay

VS8 \forall\!\, a, b \in\!\, F, \forall\!\, x \in\!\, V: (a + b)x = ax + bx

Examples

Properties

Polynomials

Definition : Pn(F) = {all polynomials of degree less than or equal n with coefficients in F}

                        = {anx^n + an-1x^n-1 + ... + a1x^1 + a1x^1}

0 = 0x^n + 0x^n-1 +...+ 0x^0

addition and multiplication: as you imagine

P(f) = {all polynomials with coefficients in F}

Take F= Z/2 |F| = 2

|P(F)| = infinite

in Pn(Z/2) x^3≠x^2

                  x^3 = 1*x^3+0x^2+0x+O = f
                  x^2 = 1*x^2+0x+0 = g
                  yet f(0)= g(0) and f(1)=g(1)

Theorem

1. Cancellation Laws

  (a) x+z=y+z         ==> x=y
  (b) ax+ay,a≠0       ==> x=y
  (c) x≠0 of V, ax=bx ==> a=b

2. 0 of V is unique

3. Negatives are unique (so subtraction makes sense

4.(0 of F)x = 0 of V

5. a*0=0

6. (-a)x= - (ax) = a(-x)

7. a*v=0 <==> a=0 or v=0

Proof

1. (a) x+z=y+z

       Find a w s.t. z+w=0 (V.S. 4)
      (x+z)+w = (y+z)+w
 Use VS2
       x+(z+w) = y +(z+w)
       x + 0   = y + o
 Use VS3      x=y

Scanned Notes by Richardm