Difference between revisions of "12240/Classnotes for Tuesday September 25"
Line 37:  Line 37:  
==Properties ==  ==Properties ==  
+  ==Polynomials==  
+  '''Definition''' : Pn(F) = {all polynomials of degree less than or equal n with coefficients in F}  
+  = {anx^n + an1x^n1 + ... + a1x^1 + a1x^1}  
+  
+  0 = 0x^n + 0x^n1 +...+ 0x^0  
+  
+  addition and multiplication: as you imagine  
+  
+  P(f) = {all polynomials with coefficients in F}  
+  
+  Take F= '''Z'''/2 F = 2  
+  
+  P(F) = infinite  
+  
+  in Pn('''Z'''/2) x^3≠x^2  
+  x^3 = 1*x^3+0x^2+0x+O = f  
+  x^2 = 1*x^2+0x+0 = g  
+  yet f(0)= g(0) and f(1)=g(1)  
+  
+  ==Theorem==  
+  1. Cancellation Laws  
+  (a) x+z=y+z ==> x=y  
+  (b) ax+ay,a≠0 ==> x=y  
+  (c) x≠0 of V, ax=bx ==> a=b  
+  
+  2. 0 of V is unique  
+  
+  3. Negatives are unique (so subtraction makes sense  
+  
+  4.(0 of F)x = 0 of V  
+  
+  5. a*0=0  
+  
+  6. (a)x=  (ax) = a(x)  
+  
+  7. a*v=0 <==> a=0 or v=0  
+  
+  ==Proof==  
+  1. (a) x+z=y+z  
+  Find a w s.t. z+w=0 (V.S. 4)  
+  (x+z)+w = (y+z)+w  
+  Use VS2  
+  x+(z+w) = y +(z+w)  
+  x + 0 = y + o  
+  Use VS3 x=y  
==Scanned Notes by [[User:RichardmRichardm]]==  ==Scanned Notes by [[User:RichardmRichardm]]== 
Revision as of 14:49, 2 November 2012

Today's class dealt with the properties of vector spaces.
Contents 
Definition
Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: (+): VxV>V, (.): FxV>V
VxV={(v,w): v,w V}
FxV={(c,v): c F, v V}
Then, (+): VxV>V is (v,w)= v+w; (.): FxV>V is (c,v)=cv
Such that
VS1 x, y V: x+y = y+x
VS2 x, y, z V: x+(y+z) = (x+y)+z
VS3 x V: 0 ( of V) +x = x
VS4 x V, V V: v + x= 0 ( of V)
VS5 x V, 1 (of F) .x = x
VS6 a, b F, x V: (ab)x = a(bx)
VS7 a F, x, y V: a(x + y)= ax + ay
VS8 a, b F, x V: (a + b)x = ax + bx
Examples
Properties
Polynomials
Definition : Pn(F) = {all polynomials of degree less than or equal n with coefficients in F}
= {anx^n + an1x^n1 + ... + a1x^1 + a1x^1}
0 = 0x^n + 0x^n1 +...+ 0x^0
addition and multiplication: as you imagine
P(f) = {all polynomials with coefficients in F}
Take F= Z/2 F = 2
P(F) = infinite
in Pn(Z/2) x^3≠x^2
x^3 = 1*x^3+0x^2+0x+O = f x^2 = 1*x^2+0x+0 = g yet f(0)= g(0) and f(1)=g(1)
Theorem
1. Cancellation Laws
(a) x+z=y+z ==> x=y (b) ax+ay,a≠0 ==> x=y (c) x≠0 of V, ax=bx ==> a=b
2. 0 of V is unique
3. Negatives are unique (so subtraction makes sense
4.(0 of F)x = 0 of V
5. a*0=0
6. (a)x=  (ax) = a(x)
7. a*v=0 <==> a=0 or v=0
Proof
1. (a) x+z=y+z
Find a w s.t. z+w=0 (V.S. 4) (x+z)+w = (y+z)+w Use VS2 x+(z+w) = y +(z+w) x + 0 = y + o Use VS3 x=y