12-240/Classnotes for Thursday September 13: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
(32 intermediate revisions by 3 users not shown)
Line 8: Line 8:
A field is a set "F' with two binary operations +,x defind on it, and two special elements 0 ≠ 1 such that
A field is a set "F' with two binary operations +,x defind on it, and two special elements 0 ≠ 1 such that


'''F1:''' <math>\forall \!\,</math>
'''F1:''' commutative law

<math>\forall \!\,</math> a, b <math>\in \!\,</math> F: a+b=b+a and a.b=b.a

'''F2:''' associative law

<math>\forall \!\,</math> a, b, c <math>\in \!\,</math> F: (a+b)+c=a+(b+c) and (a.b).c= a.(b.c)


'''F3:''' the existence of identity elements

<math>\forall \!\,</math> a <math>\in \!\,</math>, a+0=a and a.1=a


'''F4:''' existence of inverses

<math>\forall \!\,</math> a <math>\in \!\,</math> F \0,<math> \exists \!\,</math> c, d <math>\in \!\ </math> F such that a+c=o and a.d=1


'''F5:''' contributive law

<math>\forall \!\,</math> a, b, c <math>\in \!\,</math> F, a.(b+c)=a.b + a.c
== Theorems ==

'''Theorem 1: Cancellation laws'''
<math>\forall \!\,</math> a, b, c <math>\in \!\,</math> F

if a+c=b+c, then a=b

if a.c=b.c and c<math>\ne \!\,</math>0, then a=b

'''Theorem 2: Identity uniqueness'''

Identity elements 0 and 1 mentioned in '''F3''' are unique

<math>\forall \!\,</math> a, b, b' <math>\in \!\,</math> F

if a+b=a and a+b'=a, then b=b'=0

if a.b=a and a.b'=a and a<math>\ne\!\,</math>0, then b=b'=1

'''Theorem 3: Inverse uniqueness'''

Elements c and d mentioned in '''F4''' are unique

<math>\forall \!\,</math> a, b, b' <math>\in \!\,</math> F

if a+b=0 and a+b'=0, then b=b'

if a.b=1 and a.b'=1, then b=b'

'''Theorem 4'''

<math>\forall \!\,</math> a <math>\in \!\,</math> F

-( -a) = a

'''Theorem 4'''

<math>\forall \!\,</math> a <math>\in \!\,</math> F

0.a= 0

== Significance ==

'''inverse uniqueness'''

It makes sense to define an operation
-: F -> F called "negation"

For a <math>\in\!\,</math> F define -a to be equal that b <math>\in\!\,</math> F for which a+b=0, i.e, a+(-a)=0

Ex: F(5)={0,1,2,3,4}, define +,x

Question 1: What is(-3)?

Answer: -3=2 and -3 is unique

Similarly, the inverse uniqueness also makes sense a^(-1)


''' identity uniqueness'''

== Lecture Notes, upload by [[User:Starash|Starash]] ==

<gallery>
Image:Mat240 120913 p1.jpg|Page 1
Image:Mat240 120913 p2.jpg|Page 2
</gallery>

Latest revision as of 02:01, 23 October 2012

In the second day of the class, the professor continues on the definition of a field.

Definition of a field

Combined with a part from the first class, we have a complete definition as follow:

A field is a set "F' with two binary operations +,x defind on it, and two special elements 0 ≠ 1 such that

F1: commutative law

a, b F: a+b=b+a and a.b=b.a

F2: associative law

a, b, c F: (a+b)+c=a+(b+c) and (a.b).c= a.(b.c)


F3: the existence of identity elements

a , a+0=a and a.1=a


F4: existence of inverses

a F \0, c, d F such that a+c=o and a.d=1


F5: contributive law

a, b, c F, a.(b+c)=a.b + a.c

Theorems

Theorem 1: Cancellation laws a, b, c F

if a+c=b+c, then a=b

if a.c=b.c and c0, then a=b

Theorem 2: Identity uniqueness

Identity elements 0 and 1 mentioned in F3 are unique

a, b, b' F

if a+b=a and a+b'=a, then b=b'=0

if a.b=a and a.b'=a and a0, then b=b'=1

Theorem 3: Inverse uniqueness

Elements c and d mentioned in F4 are unique

a, b, b' F

if a+b=0 and a+b'=0, then b=b'

if a.b=1 and a.b'=1, then b=b'

Theorem 4

a F

-( -a) = a

Theorem 4

a F

0.a= 0

Significance

inverse uniqueness

It makes sense to define an operation -: F -> F called "negation"

For a F define -a to be equal that b F for which a+b=0, i.e, a+(-a)=0

Ex: F(5)={0,1,2,3,4}, define +,x

Question 1: What is(-3)?

Answer: -3=2 and -3 is unique

Similarly, the inverse uniqueness also makes sense a^(-1)


identity uniqueness

Lecture Notes, upload by Starash