09-240/Classnotes for Tuesday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Incomplete notes.)
m (Spacing.)
Line 15: Line 15:


<u>Definition</u>: A '''field''' is a set ''F'' with two binary operators <math>\,\!+</math>: ''F''×''F'' → ''F'', <math>\times\,\!</math>: ''F''×''F'' → ''F'' and two elements <math>0, 1 \in \mathbb R</math> s.t.
<u>Definition</u>: A '''field''' is a set ''F'' with two binary operators <math>\,\!+</math>: ''F''×''F'' → ''F'', <math>\times\,\!</math>: ''F''×''F'' → ''F'' and two elements <math>0, 1 \in \mathbb R</math> s.t.
: <math>F1 \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F</math>
: <math>F1\quad \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F</math>
: <math>F2 \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)</math>
: <math>F2\quad \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)</math>
: <math>F3 a + 0 = a, a \cdot 1 = a</math>
: <math>F3\quad a + 0 = a, a \cdot 1 = a</math>
: <math>F4 \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1</math>
: <math>F4\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1</math>
: <math>F5 \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c</math>
: <math>F5\quad \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c</math>


== Examples ==
== Examples ==

Revision as of 18:56, 15 September 2009

File:Classnotes For Tuesday, September 15.jpg

The real numbers A set with two binary operators and two special elements s.t.

Note: or means inclusive or in math.

Definition: A field is a set F with two binary operators : F×FF, : F×FF and two elements s.t.

Examples

...