Difference between revisions of "09-240/Classnotes for Tuesday September 15"

From Drorbn
Jump to: navigation, search
(Tedious Theorem: 3 to 12)
m (Tedious Theorem: forced png)
Line 139: Line 139:
 
#: <math>\Rightarrow a = c</math> by F3
 
#: <math>\Rightarrow a = c</math> by F3
 
# <math> a \cdot b = c \cdot b , (b \ne 0) \Rightarrow a = c </math>  
 
# <math> a \cdot b = c \cdot b , (b \ne 0) \Rightarrow a = c </math>  
# <math>a + O' = a \Rightarrow O' = 0</math>
+
# <math>\,\! a + O' = a \Rightarrow O' = 0</math>
 
#: <math>a + O' = a</math>
 
#: <math>a + O' = a</math>
 
#: <math>\Rightarrow a + O' = a + 0</math> by F3
 
#: <math>\Rightarrow a + O' = a + 0</math> by F3

Revision as of 23:35, 15 September 2009

The real numbers A set \mathbb R with two binary operators and two special elements 0, 1 \in \mathbb R s.t.

F1.\quad \forall a, b \in \mathbb R, a + b = b + a \mbox{ and } a \cdot b = b \cdot a
F2.\quad \forall a, b, c, (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)
\mbox{(So for any real numbers } a_1, a_2, ..., a_n, \mbox{ one can sum them in any order and achieve the same result.}
F3.\quad \forall a, a + 0 = a \mbox{ and } a \cdot 0 = 0 \mbox{ and } a \cdot 1 = a
F4.\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1
\mbox{So } a + (-a) = 0 \mbox{ and } a \cdot a^{-1} = 1
\mbox{(So } (a + b) \cdot (a - b) = a^2 - b^2)
\forall a, \exists x, x \cdot x = a \mbox{ or } a + x \cdot x = 0
Note: or means inclusive or in math.
F5.\quad (a + b) \cdot c = a \cdot c + b \cdot c

Definition: A field is a set F with two binary operators \,\!+: F×FF, \times\,\!: F×FF and two elements 0, 1 \in \mathbb R s.t.

F1\quad \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F
F2\quad \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)
F3\quad a + 0 = a, a \cdot 1 = a
F4\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1
F5\quad \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c

Examples

  1. F = \mathbb R
  2. F = \mathbb Q
  3. \mathbb C = \{ a + bi : a, b \in \mathbb R \}
    i = \sqrt{-1}
    \,\!(a + bi) + (c + di) = (a + c) + (b + d)i
    \,\!0 = 0 + 0i, 1 = 1 + 0i
  4. \,\!F_2 = \{ 0, 1 \}
  5. \,\!F_7 = \{ 0, 1,2,3,4,5,6 \}
  6. \,\!F_6 = \{ 0, 1,2,3,4,5 \} is not a field because not every element has a multiplicative inverse.
    Let a = 2.
    Then a \cdot 0 = 0, a \cdot 1 = 2, a \cdot 3 = 0, a \cdot 4 = 2, a \cdot 5 = 4
    Therefore F4 fails; there is no number b in F6 s.t. a · b = 1
Ex. 4
+ 0 1
0 0 1
1 1 0
Ex. 4
× 0 1
0 0 0
1 0 1
Ex. 5
+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5
Ex. 5
× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 0
2 0 2 4 6 1 3 1
3 0 3 6 2 5 1 2
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 4
6 0 6 5 4 3 2 5

Theorem: \,\!F_P for p>1 is a field iff (if and only if) p is a prime number

Tedious Theorem

  1. a + b = c + d \Rightarrow a = c "cancellation property"
    Proof:
    By F4, \exists d \mbox{ s.t. } b + d = 0
    \,\! (a + b) + d = (c + b) + d
    \Rightarrow a + (b + d) = c + (b + d) by F2
    \Rightarrow a + 0 = c + 0 by choice of d
    \Rightarrow a = c by F3
  2.  a \cdot b = c \cdot b , (b \ne 0) \Rightarrow a = c
  3. \,\! a + O' = a \Rightarrow O' = 0
    a + O' = a
    \Rightarrow a + O' = a + 0 by F3
    \Rightarrow O' = 0 by adding the additive inverse of a to both sides
  4. a \cdot l' = a, a \ne 0 \Rightarrow l' = 1
  5. a + b = 0 = a + b' \Rightarrow b = b'
  6. a \cdot b = 1 = a \cdot b' \Rightarrow b = b' = a^{-1}
    \,\! \mbox{Aside: } a - b = a + (-b)
    \frac ab = a \cdot b^{-1}
  7. \,\! -(-a) = a, (a^{-1})^{-1}
  8. a \cdot 0 = 0
    Proof:
    a \cdot 0 = a(0 + 0) by F3
    = a \cdot 0 + a \cdot 0 by F5
    = 0 = a \cdot 0
  9. \forall b, 0 \cdot b \ne 1
    So there is no 0−1
  10. (-a) \cdot b = a \cdot (-b) = -(a \cdot b)
  11. (-a) \cdot (-b) = a \cdot b
  12. (Bonus) \,\! (a + b)(a - b) = a^2 - b^2