Difference between revisions of "09-240/Classnotes for Tuesday September 15"

From Drorbn
Jump to: navigation, search
(Incomplete notes.)
m (Spacing.)
Line 15: Line 15:
  
 
<u>Definition</u>: A '''field''' is a set ''F'' with two binary operators <math>\,\!+</math>: ''F''×''F'' → ''F'', <math>\times\,\!</math>: ''F''×''F'' → ''F'' and two elements <math>0, 1 \in \mathbb R</math> s.t.
 
<u>Definition</u>: A '''field''' is a set ''F'' with two binary operators <math>\,\!+</math>: ''F''×''F'' → ''F'', <math>\times\,\!</math>: ''F''×''F'' → ''F'' and two elements <math>0, 1 \in \mathbb R</math> s.t.
: <math>F1 \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F</math>
+
: <math>F1\quad \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F</math>
: <math>F2 \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)</math>
+
: <math>F2\quad \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)</math>
: <math>F3 a + 0 = a, a \cdot 1 = a</math>
+
: <math>F3\quad a + 0 = a, a \cdot 1 = a</math>
: <math>F4 \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1</math>
+
: <math>F4\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1</math>
: <math>F5 \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c</math>
+
: <math>F5\quad \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c</math>
  
 
== Examples ==
 
== Examples ==

Revision as of 18:56, 15 September 2009

File:Classnotes For Tuesday, September 15.jpg

The real numbers A set \mathbb R with two binary operators and two special elements 0, 1 \in \mathbb R s.t.

F1.\quad \forall a, b \in \mathbb R, a + b = b + a \mbox{ and } a \cdot b = b \cdot a
F2.\quad \forall a, b, c, (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)
\mbox{(So for any real numbers } a_1, a_2, ..., a_n, \mbox{ one can sum them in any order and achieve the same result.}
F3.\quad \forall a, a + 0 = a \mbox{ and } a \cdot 0 = 0 \mbox{ and } a \cdot 1 = a
F4.\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1
\mbox{So } a + (-a) = 0 \mbox{ and } a \cdot a^{-1} = 1
\mbox{(So } (a + b) \cdot (a - b) = a^2 - b^2)
\forall a, \exists x, x \cdot x = a \mbox{ or } a + x \cdot x = 0
Note: or means inclusive or in math.
F5.\quad (a + b) \cdot c = a \cdot c + b \cdot c

Definition: A field is a set F with two binary operators \,\!+: F×FF, \times\,\!: F×FF and two elements 0, 1 \in \mathbb R s.t.

F1\quad \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F
F2\quad \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)
F3\quad a + 0 = a, a \cdot 1 = a
F4\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1
F5\quad \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c

Examples

  1. F = \mathbb R
  2. F = \mathbb Q
  3. \mathbb C = \{ a + bi : a, b \in \mathbb R \}
    i = \sqrt{-1}
    \,\!(a + bi) + (c + di) = (a + c) + (b + d)i
    \,\!0 = 0 + 0i, 1 = 1 + 0i
  4. \,\!F_2 = \{ 0, 1 \}

...