Difference between revisions of "0708-1300/the unit sphere in a Hilbert space is contractible"

From Drorbn
Jump to: navigation, search
Line 9: Line 9:
 
Suppose <math>x=(x_1,x_2,...)\in S^{\infty}</math> then <math>\sum x_n^2=1</math>  
 
Suppose <math>x=(x_1,x_2,...)\in S^{\infty}</math> then <math>\sum x_n^2=1</math>  
  
Define <math>F_1:S^{\infty}\times I\rightarrow S^{\infty}</math> by <math>F_1(x,t)=((1-t)x_1+t\sqrt{x_1^2+x_2^2},(1-t)x_2,x_3,x_4,...)/||((1-t)x_1+t\sqrt{x_1^2+x_2^2},(1-t)x_2,x_3,x_4,...)||</math>
+
Define <math>F_1:S^{\infty}\times I\rightarrow S^{\infty}</math> by <math>F_1(x,t)=(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_2^2}),(1-t)x_2,x_3,x_4,...)/||(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_2^2}),(1-t)x_2,x_3,x_4,...)||</math>
  
<math>F_2:S^{\infty}\times I\rightarrow S^{\infty}</math> by <math>F_2(x,t)=((1-t)x_1+t\sqrt{x_1^2+x_3^2},0,(1-t)x_3,x_4,x_5,...)/||((1-t)x_1+t\sqrt{x_1^2+x_3^2},0,(1-t)x_3,x_4,x_5,...)||</math>
+
<math>F_2:S^{\infty}\times I\rightarrow S^{\infty}</math> by <math>F_2(x,t)=(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_3^2}),0,(1-t)x_3,x_4,x_5,...)/||(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_3^2}),0,(1-t)x_3,x_4,x_5,...)||</math>
  
<math>F_3:S^{\infty}\times I\rightarrow S^{\infty}</math> by <math>F_3(x,t)=((1-t)x_1+t\sqrt{x_1^2+x_4^2},0,0,(1-t)x_4,x_5,x_6,...)/||((1-t)x_1+t\sqrt{x_1^2+x_4^2},0,0,(1-t)x_4,x_5,x_6,...)||</math>
+
<math>F_3:S^{\infty}\times I\rightarrow S^{\infty}</math> by <math>F_3(x,t)=(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_4^2}),0,0,(1-t)x_4,x_5,x_6,...)/||(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_4^2}),0,0,(1-t)x_4,x_5,x_6,...)||</math>
  
 
and so on ...
 
and so on ...

Revision as of 10:50, 2 November 2007

Let H=\{(x_1,x_2,...)| \sum x_n^2<\infty\} and define S^{\infty}=\{x\in H| ||x||=1\}

Claim

S^{\infty} is contractible

Proof

Suppose x=(x_1,x_2,...)\in S^{\infty} then \sum x_n^2=1

Define F_1:S^{\infty}\times I\rightarrow S^{\infty} by F_1(x,t)=(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_2^2}),(1-t)x_2,x_3,x_4,...)/||(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_2^2}),(1-t)x_2,x_3,x_4,...)||

F_2:S^{\infty}\times I\rightarrow S^{\infty} by F_2(x,t)=(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_3^2}),0,(1-t)x_3,x_4,x_5,...)/||(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_3^2}),0,(1-t)x_3,x_4,x_5,...)||

F_3:S^{\infty}\times I\rightarrow S^{\infty} by F_3(x,t)=(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_4^2}),0,0,(1-t)x_4,x_5,x_6,...)/||(sgn(x_1)((1-t)|x_1|+t\sqrt{x_1^2+x_4^2}),0,0,(1-t)x_4,x_5,x_6,...)||

and so on ...

applying the homotopy F_1 in the time interval [0,1/2], F_2 in the interval [1/2,3/4], F_3 in [3/4,5/6] etc...

we get the desired contraction to the point (1,0,0,...).