0708-1300/Class notes for Tuesday, September 11: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 51: Line 51:
==Class Notes==
==Class Notes==
===Differentiability===
===Differentiability===
Let <math>U</math>, <math>V</math> and <math>W</math> be two normed finite dimensional vector spaces and let <math>f:V\rightarrow W</math> be a function defined on a neighborhood of the point <math>x</math>
Let <math>U</math>, <math>V</math> and <math>W</math> be two normed finite dimensional vector spaces and let <math>f:V\rightarrow W</math> be a function defined on a neighborhood of the point <math>x</math>.


'''Definition:'''
'''Definition:'''


We say that <math>f</math> is differentiable (''diffable'') if there is a linear map <math>L</math> so that
We say that <math>f</math> is differentiable (''diffable'') at <math>x</math> if there is a linear map <math>L</math> so that


<math>\lim_{h\rightarrow0}\frac{|f(x+h)-f(x)-L(h)|}{|h|}=0.</math>
<math>\lim_{h\rightarrow0}\frac{|f(x+h)-f(x)-L(h)|}{|h|}=0.</math>


In this case we will say that <math>L</math> is a differential of <math>f</math> and will denote it by <math>df_{x}</math>.
In this case we will say that <math>L</math> is a differential of <math>f</math> at <math>x</math> and will denote it by <math>df_{x}</math>.


'''Theorem'''
'''Theorem'''

Revision as of 22:10, 11 September 2007

Announcements go here

In Small Scales, Everything's Linear

06-240-QuiltBeforeMap.png 06-240-QuiltAfterMap.png

Code in Mathematica:

QuiltPlot[{f_,g_}, {x_, xmin_, xmax_, nx_}, {y_, ymin_, ymax_, ny_}] :=
Module[
  {dx, dy, grid, ix, iy},
  SeedRandom[1];
  dx=(xmax-xmin)/nx;
  dy=(ymax-ymin)/ny;
  grid = Table[
    {x -> xmin+ix*dx, y -> ymin+iy*dy},
    {ix, 0, nx}, {iy, 0, ny}
  ];
  grid = Map[({f, g} /. #)&, grid, {2}];
  Show[
    Graphics[Table[
      {
        RGBColor[Random[], Random[], Random[]],
        Polygon[{
          grid[[ix, iy]],
          grid[[ix+1, iy]],
          grid[[ix+1, iy+1]],
          grid[[ix, iy+1]]
        }]
      },
      {ix, nx}, {iy, ny}
    ]],
    Frame -> True
  ]
]

QuiltPlot[{x, y}, {x, -10, 10, 8}, {y, 5, 10, 8}]
QuiltPlot[{x^2-y^2, 2*x*y}, {x, -10, 10, 8}, {y, 5, 10, 8}]

See also 06-240/Linear Algebra - Why We Care.

Class Notes

Differentiability

Let , and be two normed finite dimensional vector spaces and let be a function defined on a neighborhood of the point .

Definition:

We say that is differentiable (diffable) at if there is a linear map so that

In this case we will say that is a differential of at and will denote it by .

Theorem

If and are diffable maps then the following asertions holds:

  1. is unique.
  2. If is linear then
  3. For every scalar number it holds

Implicit Function Theorem

Example Although does not defines as a function of , in a neighborhood of we can define so that . Furthermore, is differentiable with differential . This is a motivation for the following theorem.

Notation

If f:X\times Y\rightarrow Z then given x\in X we will define f_{[x]}:Y\rightarrow Z by f_{[x]}(y)=f(x;y)

Definition

will be the class of all functions defined on with continuous partial derivatives up to order

Theorem(Implicit function theorem)

Let be a function defined on a neighborhood of the point and such that and suppose that is non-singular then, the following results holds:

There is an open neighborhood of , , and a function such that for every .