07-401/Class Notes for March 7: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 23: Line 23:


'''Corollary.''' If <math>p\in F[x]</math> irreducible over <math>F</math>, <math>\phi:F\to F'</math> an isomorphism, <math>a</math> a root of <math>p</math> (in some <math>E/F</math>), <math>a'</math> a root of <math>\phi(p)</math> in some <math>E'/F'</math>, then <math>F[a]\cong F'[a']</math>.
'''Corollary.''' If <math>p\in F[x]</math> irreducible over <math>F</math>, <math>\phi:F\to F'</math> an isomorphism, <math>a</math> a root of <math>p</math> (in some <math>E/F</math>), <math>a'</math> a root of <math>\phi(p)</math> in some <math>E'/F'</math>, then <math>F[a]\cong F'[a']</math>.

'''Theorem.''' A splitting field always exists.

'''Example.''' <math>x^4-x^2-2=(x^2-2)(x^2+1)</math> over <math>{\mathbb Q}</math>.


===Splitting Fields===
===Splitting Fields===


'''Definition.''' <math>f\in F[x]</math> splits in <math>E/F</math>, a splitting field for <math>f</math> over <math>F</math>.
'''Definition.''' <math>f\in F[x]</math> splits in <math>E/F</math>, a splitting field for <math>f</math> over <math>F</math>.

'''Theorem.''' A splitting field always exists.

'''Example.''' <math>x^4-x^2-2=(x^2-2)(x^2+1)</math> over <math>{\mathbb Q}</math>.


===Zeros of Irreducible Polynomials===
===Zeros of Irreducible Polynomials===

Revision as of 14:54, 7 March 2007

In Preparation

The information below is preliminary and cannot be trusted! (v)

Class Plan

Some discussion of the term test and HW6.

Extension Fields

Definition. An extension field of .

Theorem. For every non-constant polynomial in there is an extension of in which has a zero.

Example over .

Example over .

Definition. .

Theorem. If is a root of an irreducible polynomial , within some extension field of , then , and (here ) is a basis for over .

Corollary. In this case, depends only on .

Corollary. If irreducible over , an isomorphism, a root of (in some ), a root of in some , then .

Splitting Fields

Definition. splits in , a splitting field for over .

Theorem. A splitting field always exists.

Example. over .

Zeros of Irreducible Polynomials

Perfect Fields