07-401/Class Notes for April 11: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 4: Line 4:
The goal of today's class is to prove (a weak but strong enough) form of the '''Fundamental Theorem of Galois Theory''' as follows:
The goal of today's class is to prove (a weak but strong enough) form of the '''Fundamental Theorem of Galois Theory''' as follows:


'''Theorem.''' Let <math>F</math> be a field of characteristic 0 and let <math>E</math> be a splitting field over <math>F</math>. Then there is a bijection
'''Theorem.''' Let <math>F</math> be a field of characteristic 0 and let <math>E</math> be a splitting field over <math>F</math>. Then there is a correspondence between the set <math>\{K:E/K/F\}</math> of intermediate field extensions <math>K</math> lying between <math>F</math> and <math>E</math> and the set <math>\{H:H<\operatorname{Gal}(E/F)\}</math> of subgroups <math>H</math> of the Galois group <math>\operatorname{Gal}(E/F)</math> of the original extension <math>E/F</math>:
{{Equation*|<math>\{K:E/K/F\}\quad\leftrightarrow\quad\{H:H<\operatorname{Gal}(E/F)\}</math>.}}
The bijection is given by mapping every intermediate extension <math>K</math> to the subgroup <math>\operatorname{Gal}(E/K)</math> of elements in <math>\operatorname{Gal}(E/F)</math> that preserve <math>K</math>,
{{Equation*|<math>K\mapsto\operatorname{Gal}(E/K)</math>,}}
and reversely, by mapping every subgroup <math>H</math> of <math>\operatorname{Gal}(E/F)</math> to its fixed field <math>E_H</math>:
{{Equation*|<math>H\mapsto E_H</math>.}}
Furthermore, this correspondence has the following further properties:
# It is inclusion-reversing: if <math>H_1\subset H_2</math> then <math>E_{H_1}\supset E_{H_2}</math> and if <math>K_1\subset K_2</math> then <math>\operatorname{Gal}(E/K_1)>\operatorname{Gal}(E/K_1)</math>.
# It is degree/index respecting: <math>[E:K]=|\operatorname{Gal}(E/K)|</math> and <math>[K:F]=[\operatorname{Gal}(E/F):\operatorname{Gal}(E/K)]</math>.
# Splitting fields correspond to normal subgroups: If <math>K</math> in <math>E/K/F</math> is a splitting field then <math>\operatorname{Gal}(E/K)</math> is normal in <math>\operatorname{Gal}(E/F)</math> and <math>\operatorname{Gal}(K/F)\cong\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K)</math>.

Revision as of 10:56, 4 April 2007

In Preparation

The information below is preliminary and cannot be trusted! (v)

The goal of today's class is to prove (a weak but strong enough) form of the Fundamental Theorem of Galois Theory as follows:

Theorem. Let be a field of characteristic 0 and let be a splitting field over . Then there is a correspondence between the set of intermediate field extensions lying between and and the set of subgroups of the Galois group of the original extension :

.

The bijection is given by mapping every intermediate extension to the subgroup of elements in that preserve ,

,

and reversely, by mapping every subgroup of to its fixed field :

.

Furthermore, this correspondence has the following further properties:

  1. It is inclusion-reversing: if then and if then .
  2. It is degree/index respecting: and .
  3. Splitting fields correspond to normal subgroups: If in is a splitting field then is normal in and .