DEFINITIONS AND THEOREMS FOR CHAPTER 20

Definition: Extension Fields

Let F be a field
If:

1. $\mathrm{F} \subseteq \mathrm{E}$ and
2. Operations of F are those of E restricted to F

Then: E is an extension field of F

Theorem 20.1 Fundamental Theorem of Field Theory

Let:

1. F be a field and
2. $\mathrm{f}(\mathrm{x})=$ non-constant polynomial $\in \mathrm{F}[\mathrm{x}]$

Then: \exists an extension field E of F such that $\mathrm{f}(\mathrm{x}) \underline{\text { has a zero }}$

Proof:

$(\because \mathrm{F}[\mathrm{x}]=$ unique factorization domain then $\mathrm{f}(\mathrm{x})$ has an irreducible factor, say $\mathrm{p}(\mathrm{x})$
Let $\mathrm{E}=\mathrm{F} /<\mathrm{p}(\mathrm{x})>$
Showing there is an Extension By Corollary 1 of theorem 17.5: E is a field Field

Suppose $\quad \phi: \mathrm{F} \rightarrow \mathrm{E}$ such that $\phi(\mathrm{a})=\mathrm{a}+\langle\mathrm{p}(\mathrm{x})>$
Then $\quad \phi$ is $1: 1$ and preserves both operations
Then $\quad \mathrm{E}$ has a subfield isomorphic to F
Let coset be $(\mathrm{a}+<\mathrm{p}(\mathrm{x})>), \mathrm{a} \in \mathrm{F}$ then: can think of E as containing F

Definition: Splitting Field

Let:

1. E be an extension field of F
2. $f(x) \in F[x]$

If $\mathrm{f}(\mathrm{x})$ can be factored as a product of linear factors in $\mathrm{E}[\mathrm{x}]$ then $\mathrm{f}(\mathrm{x})$ splits in E
If $f(x)$ splits in E but not in no proper subfield of $E, E=$ splitting field for $f(x)$ over F

Notation:

Let:

1. F be a field
2. a_{1}, \ldots, a_{n} be elements of some extension E of F
$>\mathrm{F}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=$ smallest subfield of E that contains F and $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$
$=$ intersection of all subfields of E that contain F and $\left\{a_{1}, \ldots, a_{n}\right\}$

Suppose:

1. $f(x) \in F[x]$
2. $f(x)=b\left(x-a_{1}\right) \ldots \ldots\left(x-a_{n}\right)$

Over some extension field E of F
Then: $F\left(a_{1}, \ldots, a_{n}\right)$ is a splitting field for $f(x)$ over F in E

Theorem 20.2 Existence of Splitting Fields

Let:

1. F be a field
2. $f(x)=$ non-constant element of $F[x]$

Then \exists a splitting field E for $f(x)$ over F
Proof: (induction on $\operatorname{deg} \mathrm{f}(\mathrm{x})$)
Base Case: $\operatorname{deg} f(x)=1$ then $f(x)$ is linear
Suppose:
Statement is true for all fields and all polynomials (degree of polynomial is less than $\operatorname{deg} \mathrm{f}(\mathrm{x})$)

By 20.1, there is an extension E of F in which $f(x)$ has a zero, say a_{1} \Rightarrow can write $\mathrm{f}(\mathrm{x})=(\mathrm{x}-\mathrm{a} 1) \mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{x}) \in \mathrm{E}[\mathrm{x}]$
$\operatorname{deg} \mathrm{g}(\mathrm{x})<\operatorname{deg} \mathrm{f}(\mathrm{x})$
\Rightarrow there is a field K that contains: E and $\left\{a_{1}, \ldots, a_{n}\right\}=$ all the zeros of $g(x)$
Then: $F\left(a_{1}, \ldots, a_{n}\right)=$ splitting field for $f(x)$ over F
Theorem 20.3 F(a) $\approx \mathbf{F}[\mathbf{x}] /\langle\mathbf{p}(\mathbf{x})>$
Let:

1. F be a field
2. $p(x) \in F[x]$ be irreducible over F
i. If ' a ' is a zero of $p(x)$ in some extension E of F then $F(a) \approx F[x] /<p(x)>$
ii. If $\operatorname{deg} \mathrm{p}(\mathrm{x})=\mathrm{n}$, then every member of $\mathrm{F}(\mathrm{a})$ can be expressed as:

$$
>\mathrm{c}_{\mathrm{n}-1} \mathrm{a}^{\mathrm{n}-1}+\mathrm{c}_{\mathrm{n}-2} \mathrm{a}^{\mathrm{n}-2}+\ldots+\mathrm{c}_{1} \mathrm{a}+\mathrm{c}_{0} \text {, where } \mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}-1} \in \mathrm{~F}
$$

Proof:

Consider $\phi: \mathrm{F}[\mathrm{x}] \rightarrow \mathrm{F}(\mathrm{a})$ such that $\phi(\mathrm{f}(\mathrm{x}))=\mathrm{f}(\mathrm{a})$
Then: ϕ is a ring homomorphism
Claim: $\operatorname{Ker} \phi=<\mathrm{p}(\mathrm{x})>$

1. Since $p(a)=0 \quad \Rightarrow \quad\langle p(x)\rangle \subseteq$ Ker ϕ

Showing that: $\mathrm{F}(\mathrm{a}) \approx \mathrm{F}[\mathrm{x}] /<\mathrm{p}(\mathrm{x})>$
2. Theorem 17.5: $\quad<\mathrm{p}(\mathrm{x})>$ is a maximal ideal in $\mathrm{F}[\mathrm{x}]$

$$
\text { Since } f(x)=1 \text { is not in Ker } \phi \text {, so } \operatorname{Ker} \phi \neq \mathrm{F}[\mathrm{x}]
$$

$$
\Rightarrow \operatorname{Ker} \phi=<\mathrm{p}(\mathrm{x})>
$$

Corollary 1 of 17.5 :
F a field, $\mathrm{p}(\mathrm{x})$ irreducible polynomial over F , then $\mathrm{F}[\mathrm{x}] /<\mathrm{p}(\mathrm{x})>$ is a field
Corollary + First Isomorphism Theorem $\Rightarrow \phi(\mathrm{F}[\mathrm{x}])$ is a subfield of $\mathrm{F}(\mathrm{a})$
Since $\phi(F[x])$ contains: $\{F, a\}$ and since $F(a)$ is the smallest such field $\Rightarrow \mathrm{F}[\mathrm{x}] /<\mathrm{p}(\mathrm{x})>\approx \phi(\mathrm{F}[\mathrm{x}])=\mathrm{F}(\mathrm{a})$

Corollary $\mathbf{F}(\mathbf{a}) \approx \mathbf{F}(\mathbf{b})$

Let:

1. F be a field
2. $p(x) \in F[x]$ is irreducible over F
3. E and E^{\prime} are some extension fields of F

If ' a ' is a zero of $p(x)$ in E and ' b ' is a zero of $p(x)$ in E^{\prime}, then the fields $F(a) \approx F(b)$

Lemma

Let

1. (1) \& (2) from above corollary hold, and
2. $a=$ zero of $p(x)$ in some extension field of F

If:

1. $\quad \phi: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$ is an isomorphism and
2. $\mathrm{b}=$ zero of $\phi(\mathrm{p}(\mathrm{x}))$ in some extension field F^{\prime}

Then: \exists an iso. from $\mathrm{F}(\mathrm{a}) \rightarrow \mathrm{F}^{\prime}$ (b) that agrees with ϕ on F and carries $\mathrm{a} \rightarrow \mathrm{b}$
[Proof: see lecture notes]

Theorem 20.4 Extending $\phi: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$

Let:

1. ϕ be an isomorphism from a field F to a field F^{\prime}
2. $\mathrm{f}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$

If E is a splitting field for $\mathrm{f}(\mathrm{x})$ over F and E^{\prime} is a splitting field for $\phi(\mathrm{f}(\mathrm{x}))$ over F Then: \exists an isomorphism from $\mathrm{E} \rightarrow \mathrm{E}^{\prime}$ that agrees with ϕ on F
[Proof: (Induction on $\operatorname{deg} f(x)$) : see lecture notes]

Corollary: Splitting Fields are Unique

Let:

1. F be a field
2. $\mathrm{f}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$

Then: any two splitting fields of $\mathrm{f}(\mathrm{x})$ over F are isomorphic

Theorem 20.5 Criterion for Multiple Zeros

A polynomial $f(x)$ over a field F has a multiple zero in some extension E
$\Leftrightarrow \mathrm{f}(\mathrm{x})$ and $\mathrm{f}^{\prime}(\mathrm{x})$ have a common factor of positive degree in $\mathrm{F}[\mathrm{x}]$
Theorem 20.6 Zeros of an Irreducible
Let $f(x)$ be an irreducible polynomial over a field F.
Char $\mathrm{F}=0 \quad \Rightarrow \quad \mathrm{f}(\mathrm{x})$ has no multiple zeros
Char $\mathrm{F} \neq 0 \quad \Rightarrow \quad \mathrm{f}(\mathrm{x})$ has multiple zero only if it is of the form $\mathrm{f}(\mathrm{x})=\mathrm{g}\left(\mathrm{x}^{\mathrm{p}}\right)$, for some $\mathrm{g}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$

Proof:

Theorem 20.5: $\mathrm{f}(\mathrm{x})$ has multiple zero $\Rightarrow\left\{\mathrm{f}(\mathrm{x}), \mathrm{f}^{\prime}(\mathrm{x})\right\}$ has a common divisor of positive degree in $\mathrm{F}[\mathrm{x}]$

But only divisor of $f(x)$ of positive degree $=f(x)$; itself
And $\operatorname{deg} \mathrm{f}^{\prime}(\mathrm{x})<\operatorname{deg} \mathrm{f}(\mathrm{x})$
So: $\because f(x) \quad f^{\prime}(x)$, but a field cannot divide a poly. of smaller degree $\Rightarrow f^{\prime}(\mathrm{x})=0$

Notice: $f(x) \quad=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
So: $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{na}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}-1}+(\mathrm{n}-1) \mathrm{a}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}-2}+\ldots+\mathrm{a}_{1}$

$$
\text { So: } \mathrm{f}^{\prime}(\mathrm{x})=0 \text { only when } \mathrm{ka}_{\mathrm{k}}=0 \text { for } \mathrm{k}=1, \ldots, \mathrm{n}
$$

Case 1: Suppose Char F $=0$
$\Rightarrow f(x)=a_{0}$, thus $f(x)$ not irreducible
\Rightarrow contradicts hypothesis that $\mathrm{f}(\mathrm{x})$ is irreducible over F
$\Rightarrow \mathrm{f}(\mathrm{x})$ has no multiple zeros
Case 2: Suppose Char $\mathrm{F}=\mathrm{p} \neq 0$, Thus $\mathrm{a}_{\mathrm{k}}=0$ when $\mathrm{p} \nmid \mathrm{k}$
$\Rightarrow a_{k} x^{k}$ appears in $a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ only if x^{k} is of the form $x^{p j}=\left(x^{p}\right)^{j}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{g}\left(\mathrm{x}^{\mathrm{p}}\right)$
Example: $f(x)=x^{4 p}+3 x^{2 p}+x^{p}+1$ then: $g(x)=x^{4}+3 x^{2}+x+1$

Definition: Perfect Field
A field F is called perfect if:

1. Char $\mathrm{F}=0$ or
2. $\mathrm{F}^{\mathrm{p}}=\left\{\mathrm{a}^{\mathrm{p}} \mid \mathrm{a} \in \mathrm{F}\right\}=\mathrm{F}$

Theorem 20.7: Every finite Field is perfect
Theorem 20.8: Criterion for No Multiple Zeros
If $\mathrm{f}(\mathrm{x})$ is an irreducible polynomial over a perfect field F , then $\mathrm{f}(\mathrm{x})$ has no multiple zeros
Theorem 20.9: Zeros of an Irreducible over a Splitting Field Let:

1. $f(x)$ be an irreducible polynomial over a field F
2. E be a splitting field of $f(x)$ over F

Then: all the zeros of $\mathrm{f}(\mathrm{x})$ in E have the same multiplicity
Corollary: Factorization of an Irreducible over a splitting field See text book page: 364

