DEFINITIONS AND THEOREMS FOR CHAPTER 20

Definition: Extension Fields
Let F be a field

If:

1. FE€ Eand

2. Operations of F are those of E restricted to F
Then: E is an extension field of F
Theorem 20.1 Fundamental Theorem of Field Theory

Let:
1. F be a field and

2. f(x) = non-constant polynomial € F[x]

Then: 3 an extension field E of F such that f(x) has a zero

Proof:
/. F[x] = unique factorization domain then f(x) has an irreducible factor, say p(x)
Let E=F/ <p(x)>
Showing there .
is an Extensionq BY Corollary 1 of theorem 17.5: E is a field
Field
Suppose ¢ : F— E suchthat ¢ (a) =a+ <p(x)>
Then ¢ is 1:1 and preserves both operations
Then E has a subfield isomorphic to F
\Let coset be (a + <p(x)>), a € F then: can think of E as containing F
(" To show p(x) has a zero in E:
Showing f(x) Let p(x) =ax +...... + ag
has a zero
Then p(x + <p(x)>) = ... ... (see text) = p(x) + <p(x)> = 0 + <p(x)>

\_Then in E, x + <p(x)> is a zero of p(x)
Definition: Splitting Field
Let:

1. E be an extension field of F
2. f(x) € F[x]

If f(x) can be factored as a product of linear factors in E[x] then f(x) splits in E

If f(x) splits in E but not in no proper subfield of E, E = splitting field for f(x) over F



Notation:

Let:
1. F be a field
2. ai, ..., a,be elements of some extension E of F
» F(ay, ..., a,) = smallest subfield of E that contains F and {a,, ..., a,}
= intersection of all subfields of E that contain F and {a,, ...
Suppose:

1. f(x) € F[x]
2. f(x)=b(x—ay)...... (x—ay)
Over some extension field E of F

Then: F(ay, ..., a,) is a splitting field for f(x) over F in E
Theorem 20.2 Existence of Splitting Fields
Let:
1. F be a field
2. f(x) = non-constant element of F[x]
Then 3 a splitting field E for f(x) over F
Proof: (induction on deg f(x))

Base Case: deg f(x) = 1 then f(x) is linear

Suppose:

Statement is true for all fields and all polynomials (degree of polynomial is less

than deg f(x))

By 20.1, there is an extension E of F in which f(x) has a zero, say a,
= can write f(x) = (x — al)g(x), g(x) € E[x]

deg g(x) < deg f(x)

= there is a field K that contains: E and { aj, ..., a, } = all the zeros of g(x)

Then: F(ay, ..., a,) = splitting field for f(x) over F

Theorem 20.3 F(a) = F[x] / <p(x)>
Let:

1. F be a field

2. p(x) € F[x] be irreducible over F

i.  If‘a’ is a zero of p(x) in some extension E of F then F(a) = F[x] / <p(x)>
ii. Ifdeg p(x) = n, then every member of F(a) can be expressed as:
» cpga™! + cpa™ + ...+ cra + co, where ¢, C1, ... , Cnt EF



Showing that:

Proof:
[ Consider ¢ : F[x] — F(a) such that ¢ (f(x)) = f(a)
Then: ¢ is a ring homomorphism
Claim: Ker ¢ =<p(x)>

1. Since p(a) =0 = <px)> € Kero

Fla)~ F[x]/<p(x)> | 2. Theorem 17.5: <p(x)> is a maximal ideal in F[x]

Since f(x) = 1 is not in Ker ¢, so Ker ¢ # F[x]
= Ker ¢ =<p(x)>

Corollary 1 of 17.5:
F a field, p(x) irreducible polynomial over F, then F[x] / <p(x)> is a field

Corollary + First Isomorphism Theorem = ¢ (F[x]) is a subfield of F(a)

Since ¢ (F[x]) contains: {F, a} and since F(a) is the smallest such field
\ = Fx/ <p(0)> = 6 (F[x)) = F(a)

Corollary F(a) = F(b)
Let:
1. F be a field
2. p(x) € F[x] is irreducible over F
3. Eand E’ are some extension fields of F
If ‘a’ is a zero of p(x) in E and ‘b’ is a zero of p(x) in E” , then the fields F(a) = F(b)

Lemma
Let
1. (1) & (2) from above corollary hold, and
2. a=zero of p(x) in some extension field of F

If:
1. ¢:F—F isanisomorphism and
2. b=zero of ¢ (p(x)) in some extension field F’

Then: I aniso. from F(a) — F’ (b) that agrees with ¢ on F and carries a — b

[Proof: sece lecture notes]



Theorem 20.4 Extending ¢ : F — F/

Let:

1.

¢ be an isomorphism from a field F to a field F’

2. f(x) € F[x]

IfE is a splitting field for f(x) over F and E’ is a splitting field for ¢ (f(x)) over F

Then: - an isomorphism from E — E’ that agrees with ¢ on F
[Proof: (Induction on deg f(x)) : see lecture notes]

Corollary: Splitting Fields are Unique

Let:

1.

F be a field

2. f(x) € F[x]
Then: any two splitting fields of f(x) over F are isomorphic

Theorem 20.5 Criterion for Multiple Zeros
A polynomial f(x) over a field F has a multiple zero in some extension E

& f(x) and f'(x) have a common factor of positive degree in F[x]

Theorem 20.6 Zeros of an Irreducible
Let f(x) be an irreducible polynomial over a field F.
CharF =0 = f(x) has no multiple zeros

CharF#0 =

g(x) € F[x]
Proof:

f(x) has multiple zero only if it is of the form f(x) = g(x"), for some

Theorem 20.5: f(x) has multiple zero = {f(x), f'(x)} has a common divisor of

positive degree in F[x]
But only divisor of f(x) of positive degree = f(x) ; itself
And deg f'(x) < deg f(x)

So: " f(x) Of'(x), but a field cannot divide a poly. of smaller degree

= f'(x)=0

Notice:fix) = anx"+ ap x™" + ... +a;x +ag

So:f'(x) =nax"" + (n-1ayx">+ ... +a
So:f'(x) =0onlywhenkay=0fork=1,...,n

Case 1: Suppose Char F =0
= f(x) = ay, thus f(x) not irreducible
= contradicts hypothesis that f(x) is irreducible over F
= f(x) has no multiple zeros

Case 2: Suppose Char F=p # 0, Thus a, = 0 when p 1 k
= ax" appears in a,x" + ... + a;x + agonly ika is of the form x”
= f(x) = g(x?)
Example: f(x) =x" +3x?+x"+ 1 then: g(x)=x"+3x>+x+1

= (Y



Definition: Perfect Field
A field F is called perfect if:
1. Char F=0 or
2.FP={a"Ja€F}=F

Theorem 20.7: Every finite Field is perfect

Theorem 20.8: Criterion for No Multiple Zeros
If f(x) is an irreducible polynomial over a perfect field F, then f(x) has no multiple zeros

Theorem 20.9: Zeros of an Irreducible over a Splitting Field
Let:

1. f(x) be an irreducible polynomial over a field F

2. E be a splitting field of f(x) over F
Then: all the zeros of f(x) in E have the same multiplicity

Corollary: Factorization of an Irreducible over a splitting field
See text book page: 364



