Non Commutative Gaussian Elimination @ MAT 1100

By Arben Tapia

Amended from a similar notebook by Dror Bar-Natan and Itai Bar-Natan. The original version is at http://www.math.toronto.edu/~drorbn/Misc/SchreierSimsRubik/.

HW1, Part I
Solving the $2 \times 2 \times 2$ Rubik's Cube
Starting point:

		1	2			
		3	4			
5	6	7	8	9	10	
11	12	13	14	15	16	
	17	18			purple=Top white=Front green=Bottom	
	19	20			blue=Left	
	21	22				red=Right
	23	24				

Program 0

```
In[143]:= (* generators are computed as clockwise 90 degrees rotations when facing the respective face *)
    gs = {
            purple = P[3, 1, 4, 2, 7, 8, 9, 10, 24, 23, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 5]
        , white = P[1, 2, 12, 6, 5, 17, 13, 7, 3, 10, 11, 18, 14, 8, 4, 16, 15, 9, 19, 20, 21, 22, 23, 24]
        , green =P[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 21, 11, 12, 13, 14, 19, 17, 20, 18, 16, 15, 23, 24]
        , blue = P[21, 2, 23, 4, 11, 5, 1, 8, 9, 10, 12, 6, 3, 14, 15, 16, 7, 18, 13, 20, 17, 22, 19, 24]
        , red = P[1, 8, 3, 14, 5, 6, 7, 18, 15, 9, 11, 12, 13, 20, 16, 10, 17, 22, 19, 24, 21, 2, 23, 4]
        yellow = P[10, 16, 3, 4, 2, 6, 7, 8, 9, 20, 1, 12, 13, 14, 15, 19, 17, 18, 5, 11, 23, 21, 24, 22]
        };
    (*gs={
                purple=P[3,1,4,2,7, 8, 9, 10, 24,23,11, 12,13,14,15,16,17, 18, 19, 20, 21, 22, 6, 5]
            ,red = P [1, 8,3,14,5,6,7,18,15,9,11,12,13,20,16,10,17,22,19,24,21,2,23,4]
            , yellow=P [10, 16, 3, 4, 2, 6, 7, 8, 9, 20, 1, 12,13, 14, 15, 19, 17, 18, 5, 11, 23, 21, 24, 22]
        };*)
\(\ln [144]:=\mathbf{g s}\)
Out[144]= \(\{P[3,1,4,2,7,8,9,10,24,23,11,12,13,14,15,16,17,18,19,20,21,22,6,5]\), \(P[1,2,12,6,5,17,13,7,3,10,11,18,14,8,4,16,15,9,19,20,21,22,23,24]\), \(P[1,2,3,4,5,6,7,8,9,10,22,21,11,12,13,14,19,17,20,18,16,15,23,24]\), \(P[21,2,23,4,11,5,1,8,9,10,12,6,3,14,15,16,7,18,13,20,17,22,19,24]\), \(P[1,8,3,14,5,6,7,18,15,9,11,12,13,20,16,10,17,22,19,24,21,2,23,4]\), \(P[10,16,3,4,2,6,7,8,9,20,1,12,13,14,15,19,17,18,5,11,23,21,24,22]\}\)
```

2 | NonCommutativeGaussianElimination-222.nb
$\ln [145]:=$ (\$RecursionLimit = 2^16;

```
        n = 24;
        P /: P_P **P[a___] := p[[{a}]];
        Inv[P_P] := P @@ Ordering [P];
        Feed[P @@ Range[n]] := Null;
        (*Feed*)
        Feed[P_P] := Module[{i, j},
        For[i = 1, p[[i]] == i, ++i]; j = p[[i]];
        If[Head[s[i, j]] === P,
            Feed[Inv[s[i, j]] ** p],
            (*Else*)s[i, j] = p;
        Do[If[Head[s[k, l]] == P,
            Feed[s[i, j] ** s[k, l]];
            Feed[s[k, l] ** s[i, j]]
                ],
            {k, n}, {1, n}]
        ]]
    );
```

(Feed [\#] ; Product [1 + Length [Select[Range[n], Head [s[i, \#]] ===P\&]], \{i, n\}])\&/@ gs

Out[125]= $\{27978373094031360000,27978373094031360000,27978373094031360000$, 27978373094031360000 , 27978373094031360000,27978373094031360000$\}$
$\operatorname{In}[137]:=$ Images[i_] $:=\{i\} \sim$ Join~Select[Range[n], Head[s[i, \#]] === P \&];

ListPlot [Join @@ Table[\{i, \#\} \& /@ Images[i], \{i, n\}], AspectRatio $\rightarrow 1$
]

