MAT 240 – Linear Algebra Lecture

Reminder: Choosing a basis, V is isomorphic to F^n

Goal:

1. The set L(V, W) of all linear transformations $V \rightarrow W$ is a V.S.

2. Choosing bases, it is isomorphic to $M_{mxn}(F)$ $m = \dim(V)$ $n = \dim(W)$

Extra Claim (from last class final example):

If two linear transformations $S, S: X \to Y$ agree on a basis of X, they are equal.

If (x_i) is a basis of X and $\forall i \ S(x_i) = S(x_i) \in Y$ then S = S

Proof: Pick some element $x \in X$, as (x_i) as a basis, find scalars a_i such that.

$$x=\sum a_i x_i$$

Now: $S(x) = S(\sum a_i x_i) = \sum a_i S(x_i) = \sum a_i S^{(x_i)} = \sum a_i S^{(x_i)} = S^{(x_i)} = S^{(x_i)} = S^{(x_i)}$ $\rightarrow S = S^{(x_i)}$

Let $\beta = (u_{1,} \cdots u_n)$ be a basis (**basis is ordered**) of a finite dimension vector space V. $x \in V$ $x = \sum a_i u_i$

Let $[x]_{\beta} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = T(x)$ $\beta = (u_1, \cdots u_n) \text{ of } \vee$ $\gamma = (e_1 \cdots e_n) \text{ of } F^n$ $T: V \to F^n$

Defined by:

 $u_i \rightarrow e_i$

Indeed,
$$T(x) = T(\sum a_i u_i) = \sum a_i T(u_i) = \sum a_i e_i = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = [x]_{\beta}$$

 $T: V \to W$ is a linear transformation, $\beta = (v_1, \cdots v_n)$ is a basis for V, $\gamma = (w_1, \cdots w_n)$ is a basis for W

$$A = [T]^{\gamma}_{\beta} = \begin{bmatrix} [T(v_1)]_{\gamma} & \cdots & [T(v_n)]_{\gamma} \end{bmatrix}$$

In $P_2(\mathbf{R})$:

$$[x^{2} - 2x + 3]_{(x^{2}, x, 1)} = \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}$$
$$[x^{2} - 2x + 3]_{(1, x, x^{2})} = \begin{bmatrix} 3\\ -2\\ 1 \end{bmatrix}$$
$$[x^{2} - 2x + 3]_{(x^{2}, x, 3)} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$$

Coordinates depend on choice of basis!

D: $P_3(\mathbf{R}) \rightarrow P_2(\mathbf{R})$ (Differentiation)

$$\beta = (x^3, x^2, x, 1) \qquad \gamma = (x^2, x, 1)$$

$$[D]_{\beta}^{\gamma} = [D]_{(x^3, x^2, x, 1)}^{(x^2, x, 1)} = ([D(x^3)]_{\gamma} \quad [D(x^2)]_{\gamma} \quad [D(x)]_{\gamma} \quad [D(1)]_{\gamma})$$

$$= ([3x^2]_{\gamma} \quad [2x]_{\gamma} \quad [1]_{\gamma} \quad [0]_{\gamma})$$

$$= \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

 $T_{\theta} \colon \boldsymbol{R}_2 \to \boldsymbol{R}_2$

$$[T_{\theta}]_{e_1,e_2}^{e_1,e_2} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$