## MAT240: Abstract Linear Algebra Lecture:

We have an isomorphism:
(abstract, coordinate-free) $\rightarrow$ (practical, basis-dependent)

$$
\begin{aligned}
& L(V, M) \stackrel{\varphi}{\Rightarrow} M_{m x n}(F) \\
& T \rightarrow[T]_{\beta}^{\gamma^{n}}=A \\
& A=\left(\left[T_{\left(v_{1}\right)}\right]_{\gamma}\left|\left[T_{\left(v_{2}\right)}\right]_{\gamma} \ldots\right|\left[T_{\left(v_{n}\right)}\right]_{\gamma}\right)=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & A_{i j} & \vdots \\
A_{m 1} & \cdots & A_{m n}
\end{array}\right] \\
& \quad\left(* W \ni T_{\left(v_{j}\right)}=\sum_{i=1}^{m} A_{i j} w_{i}\right. \\
& 1 \leq j \leq n)
\end{aligned}
$$

$\varphi$ is one-to-one and onto:

- Output determines input $\leftrightarrow$ given A , you can recover $\mathrm{T} \leftrightarrow$ True $\therefore \varphi$ is one-toone.
- Onto $\leftrightarrow$ given a matrix A (of correct dimensions) we can find T. Given A, construct T using (*), (remember that a linear transformation I can be assigned arbitrary values on a basis of its domain. By construction, the matrix associated with T is A .

Definition Proposition: $L(V, W)$ is a vector space with operations as follows:
$T, S \in L(V, W)$ let $(T+S) \in L(V, W)$ be given by $(T+S)(U \in V)=T(U)+S(U)$
$c \in F(c T)(u):=c(T(u)) \rightarrow 0_{L(V, W)}(U)=0$
Part of Proof:
Claim 1: $\mathrm{T}+\mathrm{S}$ really is a linear transformation

$$
\begin{aligned}
& \rightarrow(T+S)(U+V)=T(U+V)+S(U+V)=T(U)+T(V)+S(U)+S(V) \\
& \rightarrow(T+S)(U)+(T+S)(V)=T(U)+S(U)+T(V)+S(V)
\end{aligned}
$$

$$
\text { Likewise }(T+S)(c U)=c(T+S) U
$$

Claim 2: cT is a linear transformation:
... (as previous)
Claim 3: $0_{L(V, W)}$ is a linear transformation
Next: Verify Commutativity and Associativity

To show that $T \rightarrow[T]_{\beta}^{\gamma}$ is an isomorphism of VS we just need to show:

1. $[T+S]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[S]_{\beta}^{\gamma}$
2. $[c T]_{\beta}^{\gamma}=c[T]_{\beta}^{\gamma}$ (Similar to below)

Proof of 1:

$$
\begin{aligned}
& C=[T+S]_{\beta}^{\gamma}, \quad A=[T]_{\beta}^{\gamma}, \quad B=[S]_{\beta}^{\gamma} \text { (need C=A+B) } \\
& W \ni \sum_{i=1}^{m} c_{i j} w_{i}=(T+S) v_{j}=T\left(v_{j}\right)+S\left(v_{j}\right) \\
& =\sum A_{i j} w_{i}+\sum B_{i j} w_{i}=\sum\left(A_{i j}+B_{i j}\right) w_{i} \\
& \rightarrow \forall i \quad c_{i j}=A_{i j}+B_{i j} \rightarrow C=A+B \llbracket
\end{aligned}
$$

Idea: $L(V, W) \leftrightarrow$ Matrices on $L$ there's a composition $\mathrm{T}, \mathrm{S}, \mathrm{T}$ of S should be a product on matrices.

$$
\begin{aligned}
U(\text { of } \operatorname{dim}(P)) \xrightarrow{S\left(B=[S]_{\gamma}^{\beta}\right)} & V(\text { of } \operatorname{dim}(n)) \xrightarrow{T\left(A=[T]_{\beta}^{\gamma}\right)} W(\text { of } \operatorname{dim}(m)) \\
& \xrightarrow{T \text { of } S\left(C=[T o f S]_{\alpha}^{\gamma}\right)}
\end{aligned}
$$

Challenge: Given $A \& B$, find a formula for $C$.
A is the matrix with $T\left(v_{j}\right)=\sum_{j=1}^{m} A_{i j} w_{i} \quad A \in M_{m x n}$
B
""
$S\left(u_{k}\right)=\sum_{j=1}^{n} B_{j k} v_{j} \quad B \in M_{n x p}$
C

$$
(\text { Tof } S)\left(u_{k}\right)=\sum_{i=1}^{m} c_{i k} w_{i} \quad C \in M_{m x p}
$$

$$
\begin{aligned}
& =T\left(\sum_{j=1}^{n} B_{j k} v_{j}\right)=\sum_{j=1}^{n} B_{j k} T\left(v_{j}\right)=\sum_{j=1}^{n} B_{j k} \sum_{i=1}^{m} A_{i j} w_{i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{m} B_{j k} A_{i j} w_{i} \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i j} B_{j k}\right) w_{i} \\
& \rightarrow \sum_{i=1}^{m} C_{i k} w_{i} \quad \therefore C_{i k}=\sum_{j=1}^{n} A_{i j} B_{j k}
\end{aligned}
$$

Definition: Given $A \in M_{m x n}, B \in M_{n x p}$ let $A B \in M_{m x p}$ be given by: $(A B)_{i k} \equiv \sum_{j=1}^{n} A_{i j} B_{j k}$ Theorem: $U \xrightarrow{S} V \xrightarrow{T} W[T \text { of } S]_{\alpha}^{\gamma}=[T]_{\beta}^{\gamma}$ of $[S]_{\alpha}^{\beta}$

Example 1:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 2 \\
-1 & 1 & 2
\end{array}\right) \\
& C=A B \in M_{2 x 3} \\
& C=\left(\begin{array}{ccc}
-2 & 5 & 12 \\
-2 & 11 & 30
\end{array}\right) \\
& c_{11}=\sum_{j=1}^{3} A_{i j} B_{j i}=A_{11} B_{11}+A_{12} B_{21}+A_{13} B_{31} \\
& c_{23}=\sum_{j=1}^{3} A_{i j} B_{j i}=A_{21} B_{13}+A_{22} B_{23}+A_{23} B_{33}
\end{aligned}
$$

BxA We must multiply an mxn matrix by an nxp matrix.

Example 2:

$$
\begin{aligned}
& \text { For } A=\left(\begin{array}{cc}
\cos \alpha & -\sin \beta \\
\sin \alpha & \cos \alpha
\end{array}\right) \\
& \left(\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right)=\left(\begin{array}{cc}
\cos (\beta) & -\sin (\beta) \\
\sin (\beta) & \cos (\beta)
\end{array}\right)\left(\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right)
\end{aligned}
$$

## Example 3:

$A \in M_{m x n}$ define a linear transformation $T_{A}: F^{n} \rightarrow F^{m}$ by:

$$
v \in F^{n}=M_{n x 1} \rightarrow A v \in M_{m x 1}=F^{m}
$$

(Easy to check that $T_{A}$ is a linear transformation)

$$
\left[T_{A}\right]_{e j}^{e i}=A \text { (proof to follow) }
$$

