HOMEWORK 3

LOUIS-PHILIPPE THIBAULT

Problem 1

Let G be a group of order 56 . We have that $56=2^{3} \cdot 7$. Then, using Sylow's theorem, we have that the only possibilities for the number of Sylow-p subgroups are:
(1) $n_{2}(G)=1$ or 7 ;
(2) $n_{7}(G)=1$ or 8 .

We will show that the case $n_{2}(G)=7, n_{7}(G)=8$ is impossible. Two different Sylow-7 subgroups intersect only in the identity, so none of the elements of order 7 in a given Sylow-7 subgroup is in another Sylow-7 subgroup. Also, all the Sylow-7 subgroups are conjugate, by Sylow's theorem, hence isomorphic. Then, if $n_{7}(G)=8$, we have that G has at least $8 \cdot 6=48$ elements of order 7. The remaining elements must form a Sylow-2 subgroup. So there are not enough elements of order 2 to form seven Sylow-2 subgroup, which is a contradiction.

We have shown that $n_{2}(G)=1$ or $n_{7}(G)=1$. Suppose without lost of generality that $n_{2}(G)=1$. Then there is a unique Sylow- 2 subgroup P_{2}. By the Sylow's theorem, every conjugate of P_{2} is a Sylow-2 subgroups. So P_{2} is equal to its conjugates. Hence P_{2} is normal in G.

Problem 2

Part 1. We have that $G=(\mathbb{Z} / 5)^{5} \rtimes S_{5}$. As a set G is the direct product of $(\mathbb{Z} / 5)^{5}$ and S_{5}, so $|G|=|(\mathbb{Z} / 5)|^{5}\left|S_{5}\right|=5^{6} \cdot 2^{3} \cdot 3=375000$.

Part 2. A Sylow-5 subgroup of G has order 5^{6}. We claim that $P=(\mathbb{Z} / 5)^{5} \rtimes\langle(1,2,3,4,5)\rangle$ is a Sylow-5 subgroup of G. In fact, $|P|=5^{6}$. Also, it is a subgroup of G, because it is closed under multiplication. Indeed, the multiplication is clearly closed in the first variable, since we have all of $(\mathbb{Z} / 5)^{5}$. It is also closed in the second variable, because $\langle(1,2,3,4,5)\rangle$ is a subgroup of S_{5} and the multiplication in the second variable is the same as the multiplication in S_{5}.

We claim that there are six Sylow-5 subgroups of G. Indeed, all Sylow-5 subgroups are conjugate of P. Conjugating in the first variable does not change the group $(\mathbb{Z} / 5)^{5}$. So, the number of Sylow-5 subgroups of G is equal to the number of groups conjugated to $\langle(1,2,3,4,5)\rangle \cong C_{5}$. Every conjugate P^{\prime} of $\langle(1,2,3,4,5)\rangle$ is such that $\left|P^{\prime}\right|=|\langle(1,2,3,4,5)\rangle|=5$. Also, there are $4!=24$ elements of order 5 in S_{5}. Since each conjugate in S_{5} preserves the cycle type, we have that every conjugate of P contains four 5 -cycles and the identity. So there is $24 / 4=6$ groups conjugated to $\langle(1,2,3,4,5)\rangle$. Hence $n_{5}(G)=6$.

Problem 3

If Q was the semi-direct product of two of its proper subgroups, it would have to be of a group of order 4 with a group of order 2 . The only group of order 2 is C_{2} and the two only groups of order 4 are C_{4} and $C_{2} \times C_{2}=V_{4}$. But V_{4} is not a subgroup of Q, because V_{4} has three elements of order 2 and Q has only one element of order 2 . So if Q is a semi-direct product, then there is only two possibilities, namely
(1) $Q=C_{4} \rtimes C_{2}$;
(2) $Q=C_{2} \rtimes C_{4}$.

We will show that all of these possibilities are impossible. First of all, the only subgroup of order 2 in Q is $\{+1,-1\}$. Moreover,

$$
Q /\{+1,-1\} \cong V_{4} .
$$

Indeed, $Q /\{+1,-1\}=\{\overline{1}, \bar{i}, \bar{j}, \bar{k}\}$. Since $\bar{i}, \bar{j}, \bar{k}$ all have order $2, Q /\{+1,-1\} \cong V_{4}$. So case 2 is impossible, because whenever a group $G=N \rtimes H$, then $G / N \cong H$.

We now analyze case 1. $\operatorname{Aut}\left(C_{4}\right) \cong C_{2}$. We now imagine $C_{2}=\{0,1\}$ as the additive cyclic group. So there is only one non-trivial homomorphism $\phi: C_{2} \rightarrow \operatorname{Aut}\left(C_{4}\right)$, namely the one sending 0 to the identity automorphism and 1 to ϕ_{1}, where

$$
\phi_{1}(0)=0, \phi_{1}(1)=3, \phi_{1}(2)=2, \phi_{1}(3)=1 .
$$

Then, $C_{4} \rtimes C_{2}=\{(0,1),(1,1),(2,1),(3,1),(0,0),(1,0),(2,0),(3,0)\}$ as a set. Clearly, the identity has to be $(0,0)$. We have that $(0,1)(0,1)=(0,0)$, under the operation of the semidirect product. Also, $(2,1)(2,1)=(0,0)$. So there is two elements of order 2 in $C_{4} \rtimes C_{2}$, but Q has only one element of order 2 . If ϕ is trivial, then $C_{4} \rtimes C_{2}=C_{4} \times C_{2}$. But $(0,1)$ and $(2,1)$ have order 2 in $C_{4} \times C_{2}$, whereas Q has only one element of order 2 . So case 1 is impossible.

So, none of the possible semi-direct products of order 8 is isomorphic to Q.

Problem 4

Suppose $|H|=p^{\alpha}$ for a given α. Let H acts on G / H by left multiplication. Then, $\operatorname{Orb}(g H)=\{h g H \mid h \in H\}$. We have that

$$
\begin{gathered}
|O r b(g H)|=1 \Leftrightarrow h g H=g H, \forall h \in H \Leftrightarrow g^{-1} H g \subset H \\
\Leftrightarrow g \in N_{G}(H) \Leftrightarrow g H \in N_{G}(H) / H .
\end{gathered}
$$

Let $g_{i} H$ be representatives of the orbits that contain more than one element. Then,

$$
|G / H|=\left|N_{G}(H) / H\right|+\sum_{i}\left|\operatorname{Orb}\left(g_{i} H\right)\right| .
$$

Now we have that for all $i,\left|\operatorname{Orb}\left(g_{i} H\right)\right|>1$ and $\left|\operatorname{Orb}\left(g_{i} H\right)\right|\left||H|=p^{\alpha}\right.$. So $| \operatorname{Orb}\left(g_{i} H\right) \mid \equiv$ $0 \bmod p$ for all i. Then

$$
|G / H| \equiv\left|N_{G}(H) / H\right| \bmod p
$$

Problem 5

We will start by part 2 . We have that $(-a)(a)=-\left(a^{2}\right)$. Indeed,

$$
(-a)(a)+(a)(a)=(-a+a)(a)=0,
$$

where we have used the distribution property. Then,

$$
(-a)(-a)+\left(-\left(a^{2}\right)\right)=(-a)(-a)+(-a)(a)=(-a)(-a+a)=0 .
$$

So $(-a)^{2}=a^{2}$, where we have used the fact that $-\left(-\left(a^{2}\right)\right)=a^{2}$. For part 1 , we just need to take $a=1$.

Problem 6

Part 1. Let D be a finite integral domain. By definition, an integral domain is commutative, so we only need to check that every nonzero element of D has a multiplicative inverse. Let $a \neq 0$ be an element of D. Then we have that

$$
\{a x \mid x \in D\}=D .(*)
$$

In fact, we have that whenever $x \neq y, a x \neq a y$, because D is a domain. Since D is finite, we have $|\{a x \mid x \in D\}|=|D|$, and this implies the result (*). In particular, there exists an x such that $a x=1$. So a has an inverse. Since a was arbitrary, we have that every element of D has an inverse. Hence D is a field.

Part 2. We have that an ideal P is prime in R if and only if R / P is an integral domain. Since R / P is a finite integral domain, it is a field (see part 1). We have proved in class that given a ring S and an ideal I, the quotient S / I is a field if and only if I is maximal. Then, using this theorem, P is maximal.

Problem 7

Part 1. We first show that for every $x \in R, 2 x=0$. Indeed,

$$
2 x=x+x=(x+x)^{2}=x^{2}+2 x^{2}+x^{2}=x+2 x+x=4 x .
$$

Subtracting by $2 x$ both side, we have $2 x=0$. In particular, it means that $x=-x$.
Using this property, we prove the main result:

$$
x+y=(x+y)^{2}=x^{2}+x y+y x+y^{2}=x+x y+y x+y .
$$

Subtracting by x and y both side, we have $x y+y x=0$, so $x y=-y x=y x$. Since x, y were arbitrary, we conclude that R is commutative.

Part 2. $\mathbb{Z} / 2$ is clearly a Boolean ring. It is also a field, so it is an integral domain. Since $\mathbb{Z} / 2$ is the only ring up to isomorphism of order 2, suppose we have a Boolean ring R such that $|R|>2$. Take $a \neq 0,1$ in R. Then, $a(a-1)=a^{2}-a=0$, but $a \neq 0$ and $a-1 \neq 0$, because $a \neq 1$. So R is not an integral domain.

Problem 8

Part 1. By the Bolzano-Weiestrass theorem, every bounded sequence has a converging subsequence. So, intuitively, we want to define a map $\phi: S \rightarrow \mathbb{R}$ such that ϕ sends a sequence to the limit of one of its converging subsequence. We want to find a way to choose which subsequence to take. We will do this by using the fact that we want J to be in the kernel of ϕ.

Define $U_{\epsilon,\left(a_{n}\right)}=\left\{i \in \mathbb{N}| | a_{i} \mid<\epsilon, a_{i} \in\left(a_{n}\right)\right\}$, and $U_{J}=\left\{U_{\epsilon,\left(a_{n}\right)} \mid \epsilon>0,\left(a_{n}\right) \in J\right\}$. We claim that the map $\phi: S \rightarrow \mathbb{R},\left(a_{n}\right) \mapsto x$, where x is chosen such that for all $\epsilon>0$,

$$
\left\{i \in \mathbb{N}\left|\left|a_{i}-x\right|<\epsilon, a_{i} \in\left(a_{n}\right)\right\} \in U_{J}\right.
$$

(1) is well-defined, that is, x exists and is unique;
(2) is a surjective homomorphism;
(3) has $\operatorname{ker} \phi=J$.

These three properties will complete the proof. Indeed, by the first isomorphism theorem, we will have $S / J \cong \mathbb{R}$.

We start by stating four properties of J and U_{J}.
a. We first notice that J cannot contain a sequence with a finite number of elements equal to 0 (or no element equal to 0), unless this sequence contains a subsequence that converges to 0 . Otherwise, if $\left(a_{n}\right) \in J$ has only a finite number of elements equal to 0 and no subsequences converging to 0 , then $J=S$. Indeed, we can take $\left(d_{n}\right) \in I$ such that $\left(\tilde{a}_{n}\right)=\left(a_{n}\right)+\left(d_{n}\right) \in J$ do not contain any zero, nor subsequences converging to 0 . Then, for every $\left(b_{n}\right) \in S$, there exists a $\left(c_{n}\right) \in S$ such that $\left(b_{n}\right)=\left(\tilde{a}_{n}\right)\left(c_{n}\right)$. The sequence $\left(c_{n}\right)$ can be chosen to be bounded because (\tilde{a}_{n}) has no subsequence converging to 0 . Thus, $\left(b_{n}\right) \in J$. Since $\left(b_{n}\right)$ was arbitrary, $J=S$. In particular, $\emptyset \notin U_{J}$ and U_{J} contains no finite sets.
b. If $U_{\epsilon,\left(a_{n}\right)} \in U_{J}$ and $U_{\epsilon,\left(a_{n}\right)} \subset V$, then $V \in U_{J}$. Indeed, V is of the form $V=U_{\epsilon^{\prime},\left(\tilde{a}_{n}\right)}$, where $\epsilon^{\prime}>\epsilon$ and $\left(\tilde{a}_{n}\right) \in J$ is such that $U_{\epsilon,\left(a_{n}\right)}=U_{\epsilon,\left(\tilde{a}_{n}\right)}$. Note that every $\left(\tilde{a}_{n}\right)$ having the property $U_{\epsilon,\left(a_{n}\right)}=U_{\epsilon,\left(\tilde{a}_{n}\right)}$ are in J, as it suffices to obtain it from a multiplication of $\left(a_{n}\right)$ by an appropriate sequence in S.
c. If $\left(a_{n}\right),\left(b_{n}\right) \in J, U_{\epsilon,\left(a_{n}\right)}, U_{\epsilon^{\prime},\left(b_{n}\right)} \in U_{j}$, then $U_{\epsilon,\left(a_{n}\right)} \cap U_{\epsilon^{\prime},\left(b_{n}\right)} \in U_{J}$. Indeed, $U_{\epsilon,\left(a_{n}\right)} \cap U_{\epsilon^{\prime},\left(b_{n}\right)} \supset$ $U_{\epsilon+\epsilon^{\prime},\left(a_{n}\right)+\left(b_{n}\right)}$. Then the result follows from b.
d. If $U \notin U_{J}$, then $U^{c} \in U_{J}$. In fact, otherwise let $\left(b_{n}\right)$ be the sequence such that $b_{i}=0$ for every $i \in U^{c}$. Note that $\left(b_{n}\right)$ have infinitely many 0 , because otherwise $U \in U_{I} \subset U_{J}$. Then, $J\left[\left(b_{n}\right)\right]$, the smallest ideal containing both J and $\left(b_{n}\right)$ is not all of S. This contradicts the maximality of J. Indeed, if $\left(s_{n}\right) \in S$ has sufficiently large entries at every index, it is clearly impossible to multiply $\left(b_{n}\right)$ by a sequence of S to obtain $\left(s_{n}\right)$, since $\left(b_{n}\right)$ has infinitely many 0 . Moreover, if $\left(b_{n}\right)+\left(c_{n}\right)=\left(s_{n}\right)$, with $\left(c_{n}\right) \in J$, then there exists $\epsilon>0$ such that $U_{\epsilon,\left(c_{n}\right)} \subset U$. In fact, since $\left(c_{n}\right) \in J$, it has infinitely many small values. Those small values have to be at different indices that those of $\left(b_{n}\right)$, since $\left(s_{n}\right)$ has large values. So, by property b, $U \in U_{J}$. Since this is impossible, it implies that $\left(c_{n}\right)$ cannot be in J, so $\left(s_{n}\right) \notin J\left[\left(b_{n}\right)\right]$ implies $J\left[\left(b_{n}\right)\right] \neq S$.

We now prove the uniqueness. Suppose x_{1} and x_{2} are good candidate for $\phi\left(a_{n}\right)$. Then there exists $\epsilon>0$ such that

$$
\left\{i \in \mathbb{N}\left|\left|a_{i}-x_{1}\right|<\epsilon\right\} \in U_{J},\left\{i \in \mathbb{N}| | a_{i}-x_{2} \mid<\epsilon\right\} \in U_{J}\right.
$$

are disjoint. But, by properties a and c, this is impossible.
We want to prove the existence. Suppose that there exists $\left(a_{n}\right)$ such that for all convergent subsequences $\left(a_{k}\right)$, there exists $\epsilon_{\left(a_{k}\right)}>0$ such that

$$
\tilde{U}_{\left.\epsilon_{\left(a_{k}\right)}\right),\left(a_{k}\right)}=\left\{i \in \mathbb{N}| | a_{i}-x_{\left(a_{k}\right)} \mid<\epsilon_{\left(a_{k}\right)}\right\} \notin U_{J},
$$

where $x_{\left(a_{k}\right)}$ is the limit of $\left(a_{k}\right)$. Then, since the complement $\tilde{U}^{c} \epsilon_{\left(a_{k}\right),\left(a_{k}\right)}$ of every $\tilde{U}_{\epsilon_{\left(a_{k}\right)},\left(a_{k}\right)}$ is in U_{J} (property d), then $\cap \tilde{U}_{\left.\epsilon_{\left(a_{k}\right)}\right),\left(a_{k}\right)} \in U_{J}$ (property c) is finite, where the intersection is taken over all the converging subsequences of $\left(a_{n}\right)$. This contradicts property a.

We now want to prove that ϕ is a surjective homomorphism. First, ϕ is clearly surjective, as $\left(\phi\left((r)_{i=0}^{\infty}\right)=r\right.$ for all r in \mathbb{R}. If $\phi\left(a_{n}\right)=x_{1}$ and $\phi\left(b_{n}\right)=x_{2}$, then $\left(a_{n}\right)-\left(x_{1}\right) \in J$ and $\left(b_{n}\right)-\left(x_{2}\right) \in J$. So $\left(\left(a_{n}\right)+\left(b_{n}\right)-\left(\left(x_{1}\right)+\left(x_{2}\right)\right)\right) \in J$, where we view x_{1}, x_{2} as sequences $\left(x_{1}\right)$, $\left(x_{2}\right)$, respectively. Thus, for all $\epsilon>0$,

$$
\left\{i \in \mathbb{N}\left|\left|a_{i}+b_{i}-\left(x_{1}+x_{2}\right)\right|<\epsilon\right\} \in U_{J} .\right.
$$

Hence, $\phi\left(a_{n}+b_{n}\right)=x_{1}+x_{2}$. Also, $\left(x_{2}\right)\left(\left(a_{n}\right)-\left(x_{1}\right)\right) \in J$, because J is an ideal. Then, $\left(\left(a_{n}\right)\left(\left(b_{n}\right)-\left(x_{2}\right)\right)+\left(x_{2}\right)\left(\left(a_{n}\right)-\left(x_{1}\right)\right)\right)=\left(\left(a_{n}\right)\left(b_{n}\right)-\left(x_{1}\right)\left(x_{2}\right)\right) \in J$, so $\phi\left(a_{n} b_{n}\right)=x_{1} x_{2}$ as
before. So ϕ is a homomorphism.
Finally, $\operatorname{ker} \phi=J$. This is clear, because $J \subset \operatorname{ker} \phi$. Then, by maximality of $J, J=k e r \phi$.
So $S / J \cong \mathbb{R}$.
Part 2. The last two parts are due to the fact that Lim_{J} is a homomorphism. For the first part, let $\operatorname{Lim}_{J}\left(a_{n}\right)=x$. Then, $\left(\left(a_{n}\right)-(x)\right) \in J$. So, $(c)\left(\left(a_{n}\right)-(x)\right) \in J$, because J is an ideal. Then, as in part 1 , for all $\epsilon>0$,

$$
\left\{i \in \mathbb{N}\left|\left|c a_{i}-c x\right|<\epsilon\right\} \in U_{J}\right.
$$

So, $\operatorname{Lim}_{j}\left(c a_{n}\right)=c x$.
Part 3. First of all, notice that all convergent sequences having limit 0 are in J. This is due to the fact that if $\left(a_{n}\right) \rightarrow 0$, then for all $\epsilon>0$, there exists N such that for all $n>N,\left|a_{n}\right|<\epsilon$. Then, take $\left(b_{n}\right) \in I$ such that $b_{n}=0$ for all n such that $\left|a_{n}\right|<\epsilon$. We have that

$$
\left\{i \in \mathbb{N}\left|\left|a_{i}\right|<\epsilon\right\}=U_{\epsilon,\left(b_{n}\right)} \in U_{J}\right.
$$

Since $\epsilon>0$ was arbirary, $\operatorname{Lim}_{J}\left(a_{n}\right)=0$. So, $\left(a_{n}\right) \in J$. Now take a convergent sequence $\left(c_{n}\right) \rightarrow x$. Then, $\left(\left(c_{n}\right)-(x)\right)$ is a sequence converging to 0 . So $\left(\left(c_{n}\right)-(x)\right) \in J$. Thus, $\operatorname{Lim}_{J}\left(\left(c_{n}\right)-(x)\right)=0$. Hence, $\operatorname{Lim}_{J}\left(c_{n}\right)=\operatorname{Lim}_{J}(x)=x$.
Part 4. The answer is no. Indeed, take the sequences $\left((-1)^{n}\right)$ and $\left((-1)^{n+1}\right)$. Then, if $\operatorname{Lim}_{J}\left(\left((-1)^{n}\right)\right)=\operatorname{Lim}_{J}\left(\left((-1)^{n+1}\right)\right)$, we have $\left.\operatorname{Lim}_{J}\left(\left((-1)^{n}\right)\right)-\left((-1)^{n+1}\right)\right)=0$. But, clearly $\left.\operatorname{Lim}_{J}\left(\left((-1)^{n}\right)\right)-\left((-1)^{n+1}\right)\right)=\operatorname{Lim}_{J}\left(2(-1)^{n}\right)=2$ or -2 , depending on J.

