HOMEWORK 3

LOUIS-PHILIPPE THIBAULT

PROBLEM 1

Let G be a group of order 56. We have that 56 = 23 - 7. Then, using Sylow’s theorem, we

have that the only possibilities for the number of Sylow-p subgroups are:

(1) n2(G) =1or 7;

(2) n7(G) =1 or 8.
We will show that the case no(G) = 7,n7(G) = 8 is impossible. Two different Sylow-7 sub-
groups intersect only in the identity, so none of the elements of order 7 in a given Sylow-7
subgroup is in another Sylow-7 subgroup. Also, all the Sylow-7 subgroups are conjugate, by
Sylow’s theorem, hence isomorphic. Then, if n7(G) = 8, we have that G has at least 8 -6 = 48
elements of order 7. The remaining elements must form a Sylow-2 subgroup. So there are not
enough elements of order 2 to form seven Sylow-2 subgroup, which is a contradiction.

We have shown that no(G) = 1 or n7(G) = 1. Suppose without lost of generality that
n2(G) = 1. Then there is a unique Sylow-2 subgroup P,. By the Sylow’s theorem, every
conjugate of P» is a Sylow-2 subgroups. So P; is equal to its conjugates. Hence P is normal
in G.

PROBLEM 2

Part 1. We have that G = (Z/5)° x S5. As a set G is the direct product of (Z/5)° and Ss,
so |G| = |(Z/5)|?|S5] = 5% - 23 - 3 = 375000.

Part 2. A Sylow-5 subgroup of G has order 5. We claim that P = (Z/5) x ((1,2,3,4,5)) is
a Sylow-5 subgroup of G. In fact, |P| = 5°. Also, it is a subgroup of G, because it is closed
under multiplication. Indeed, the multiplication is clearly closed in the first variable, since
we have all of (Z/5). Tt is also closed in the second variable, because ((1,2,3,4,5)) is a sub-
group of S5 and the multiplication in the second variable is the same as the multiplication in Ss.

We claim that there are six Sylow-5 subgroups of G. Indeed, all Sylow-5 subgroups are con-
jugate of P. Conjugating in the first variable does not change the group (Z/5)3. So, the number
of Sylow-5 subgroups of G is equal to the number of groups conjugated to ((1,2,3,4,5)) = Cs.
Every conjugate P’ of ((1,2,3,4,5)) is such that |P'| = [{(1,2,3,4,5))] = 5. Also, there are
4! = 24 elements of order 5 in S5. Since each conjugate in S5 preserves the cycle type, we
have that every conjugate of P contains four 5-cycles and the identity. So there is 24/4 = 6
groups conjugated to ((1,2,3,4,5)). Hence ns(G) = 6.

PROBLEM 3

If @ was the semi-direct product of two of its proper subgroups, it would have to be of a
group of order 4 with a group of order 2. The only group of order 2 is Cy and the two only
groups of order 4 are Cy and Co x Co = V4. But Vj is not a subgroup of (), because V4 has
three elements of order 2 and ) has only one element of order 2. So if @) is a semi-direct
product, then there is only two possibilities, namely
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(1) Q = C4 X CQ;
(2) Q = Cy x Cy.

We will show that all of these possibilities are impossible. First of all, the only subgroup of
order 2 in @ is {+1,—1}. Moreover,

Q/{+1,-1} =V,
Indeed, Q/{+1,—1} = {1,4,j,k}. Since 7,7, k all have order 2, Q/{+1,—1} = V,. So case 2
is impossible, because whenever a group G = N x H, then G/N = H.

We now analyze case 1. Aut(Cy) = Cy. We now imagine Cy = {0,1} as the additive cyclic
group. So there is only one non-trivial homomorphism ¢ : Co — Aut(Cy), namely the one
sending 0 to the identity automorphism and 1 to ¢;, where

$1(0) =0, ¢1(1) = 3, 1(2) =2, $1(3) = 1.

Then, Cy x Cy = {(0,1),(1,1),(2,1),(3,1),(0,0),(1,0),(2,0),(3,0)} as a set. Clearly, the
identity has to be (0,0). We have that (0,1)(0,1) = (0,0), under the operation of the semi-
direct product. Also, (2,1)(2,1) = (0,0). So there is two elements of order 2 in Cy x Cy, but
@ has only one element of order 2. If ¢ is trivial, then Cy x Cy = Cy x Co. But (0,1) and (2, 1)
have order 2 in C4 x Cy, whereas Q has only one element of order 2. So case 1 is impossible.

So, none of the possible semi-direct products of order 8 is isomorphic to Q.

PROBLEM 4

Suppose |H| = p“ for a given a. Let H acts on G/H by left multiplication. Then,
Orb(gH) = {hgH|h € H}. We have that

|Orb(gH)| =1 < hgH = gH,Yh e H < g 'HgC H

& g€ Ng(H) < gH € Ng(H)/H.

Let g;H be representatives of the orbits that contain more than one element. Then,

|G/H| = |Na(H)/H| + Z |Orb(giH ).

Now we have that for all ¢, |Orb(¢g;H)| > 1 and |Orb(g;H)| | |[H| = p®. So |Orb(¢g;H)| =
0 modp for all i. Then

|G/H| = |N¢g(H)/H| mod p.

PROBLEM 5
We will start by part 2. We have that (—a)(a) = —(a?). Indeed,
(—a)(a) + (a)(a) = (—a +a)(a) = 0,
where we have used the distribution property. Then,
(—a)(=a) + (=(a*)) = (=a)(~a) + (~a)(a) = (~a)(~a+a) = 0.

So (—a)? = a?, where we have used the fact that —(—(a?)) = a®. For part 1, we just need to
take a = 1.
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PROBLEM 6

Part 1. Let D be a finite integral domain. By definition, an integral domain is commutative,
so we only need to check that every nonzero element of D has a multiplicative inverse. Let
a # 0 be an element of D. Then we have that

{azla € D} = D. (x)

In fact, we have that whenever x # y, ax # ay, because D is a domain. Since D is finite, we
have |{ax|z € D}| = |D|, and this implies the result (). In particular, there exists an = such
that az = 1. So a has an inverse. Since a was arbitrary, we have that every element of D has
an inverse. Hence D is a field.

Part 2. We have that an ideal P is prime in R if and only if R/P is an integral domain.
Since R/P is a finite integral domain, it is a field (see part 1). We have proved in class that
given a ring S and an ideal I, the quotient S/I is a field if and only if  is maximal. Then,
using this theorem, P is maximal.

PROBLEM 7
Part 1. We first show that for every x € R, 2z = 0. Indeed,
r=z+r=(r+x) =2 +22>+ 2 =2+ 22 +2 =4z

Subtracting by 2x both side, we have 2z = 0. In particular, it means that x = —z.

Using this property, we prove the main result:
cty=(x+yl=2taytyr+y’=x+aytyr+y.

Subtracting by = and y both side, we have xy + yx = 0, so xy = —yx = yzx. Since z,y were
arbitrary, we conclude that R is commutative.

Part 2. Z/2 is clearly a Boolean ring. It is also a field, so it is an integral domain. Since Z/2
is the only ring up to isomorphism of order 2, suppose we have a Boolean ring R such that
|R| > 2. Take a # 0,1 in R. Then, a(a — 1) = a? —a =0, but a # 0 and a — 1 # 0, because
a # 1. So R is not an integral domain.

PROBLEM &

Part 1. By the Bolzano-Weiestrass theorem, every bounded sequence has a converging sub-
sequence. So, intuitively, we want to define a map ¢ : S — R such that ¢ sends a sequence
to the limit of one of its converging subsequence. We want to find a way to choose which
subsequence to take. We will do this by using the fact that we want J to be in the kernel of

o.
Define U (,,,) = {i € N|a;| < €,a; € (an)}, and Uy = {U (q,)l€ > 0, (an) € J}. We claim
that the map ¢ : S — R, (ay) — x, where x is chosen such that for all € > 0,
{i € N||a; — x| < €,a; € (an)} €Uy

(1) is well-defined, that is, x exists and is unique;
(2) is a surjective homomorphism;
(3) has ker¢p = J.
These three properties will complete the proof. Indeed, by the first isomorphism theorem,
we will have S/J = R.

We start by stating four properties of J and Uj.
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a. We first notice that J cannot contain a sequence with a finite number of elements equal to
0 (or no element equal to 0), unless this sequence contains a subsequence that converges to 0.
Otherwise, if (a,) € J has only a finite number of elements equal to 0 and no subsequences
converging to 0, then J = S. Indeed, we can take (dy) € I such that (a,) = (an) + (dn) € J
do not contain any zero, nor subsequences converging to 0. Then, for every (b,) € S, there
exists a (¢,) € S such that (b,) = (@n)(cn). The sequence (¢,) can be chosen to be bounded
because (a,) has no subsequence converging to 0. Thus, (b,) € J. Since (b,) was arbitrary,
J = 8. In particular, ) € U; and U; contains no finite sets.

b. If U (y,) € Uy and U (q,) C V, then V € U;. Indeed, V is of the form V = Uy ,),
where ¢ > € and (a,) € J is such that U (,,) = U (a,)- Note that every (a,) having the
property Ue (4,) = U (a,) are in J, as it suffices to obtain it from a multiplication of (a,) by
an appropriate sequence in S.

c. If (ap), (by) € J, UE’(an), Ue’,(bn) € Uj, then UE’(an) ﬂUe’,(bn) € Uj. Indeed, Ue,(an) ﬁUe’,(bn) D)
Uete' (an)+(bn)- Then the result follows from b.

d. f U ¢ Uy, then U¢ € Uy. In fact, otherwise let (b,) be the sequence such that b; = 0
for every i € U°. Note that (b,) have infinitely many 0, because otherwise U € Ur C Uj.
Then, J[(by)], the smallest ideal containing both J and (b,,) is not all of S. This contradicts
the maximality of J. Indeed, if (s,) € S has sufficiently large entries at every index, it is
clearly impossible to multiply (b,) by a sequence of S to obtain (s,), since (b,,) has infinitely
many 0. Moreover, if (b,) + (¢,) = (sn), with (¢,) € J, then there exists € > 0 such that
Ue(c,) C U. In fact, since (¢,) € J, it has infinitely many small values. Those small values
have to be at different indices that those of (b,), since (s,,) has large values. So, by property b,
U € Uy. Since this is impossible, it implies that (¢,) cannot be in J, so (s,,) & J[(by,)] implies
J[(ba)] # 8.

We now prove the uniqueness. Suppose x; and x5 are good candidate for ¢(a,). Then there
exists € > 0 such that

{i e N|ja; —x1| < e} €Uy, {it €N||a; —x2| < €} € Uy

are disjoint. But, by properties a and c¢, this is impossible.

We want to prove the existence. Suppose that there exists (ay) such that for all convergent
subsequences (ax), there exists €(,,) > 0 such that
(ar) = 10 € Nllai = 2a)| < €@y} € U,

€(ag)

where z(,, is the limit of (aj). Then, since the complement U~CE( of every UE(

ay)(ak) ay)(ak)

is in U (property d), then NU “ea € Uy (property c) is finite, where the intersection is

k)V(a’k)
taken over all the converging subsequences of (a,). This contradicts property a.

We now want to prove that ¢ is a surjective homomorphism. First, ¢ is clearly surjective,
as (¢((r)2,) = r for all r in R. If ¢(an) = x1 and ¢(b,) = 2, then (a,) — (1) € J and
(bn) — (z2) € J. So ((an) + (bn) — ((x1) + (x2))) € J, where we view x1, 2 as sequences (x1),
(z2), respectively. Thus, for all € > 0,

{i € N|la; + b; — (x1 + x2)| < e} € Uy.

Hence, ¢(ayn, + b,) = 1 + x2. Also, (x2)((an) — (1)) € J, because J is an ideal. Then,
((an)((bn) = (22)) + (22)((an) = (21))) = ((an)(bn) = (z1)(22)) € J, 50 Planbn) = w122 as
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before. So ¢ is a homomorphism.
Finally, ker¢ = J. This is clear, because J C ker¢. Then, by maximality of J, J = ker¢.

So S/J = R.

Part 2. The last two parts are due to the fact that Lim; is a homomorphism. For the first
part, let Lim j(ay,) = . Then, ((an) — (z)) € J. So, (¢)((an) —(x)) € J, because J is an ideal.
Then, as in part 1, for all € > 0,

{i € N||ca; — cz| < €} € Uy.
So, Limj(cay) = cz.
Part 3. First of all, notice that all convergent sequences having limit 0 are in J. This is due

to the fact that if (a,,) — 0, then for all € > 0, there exists N such that for alln > N, |a,| < €.
Then, take (b,) € I such that b, = 0 for all n such that |a,| < e. We have that

{i € N||a;| < €} = Ue,(bn) eUj.

Since € > 0 was arbirary, Limj(a,) = 0. So, (an) € J. Now take a convergent sequence
(cn) = x. Then, ((¢,) — (x)) is a sequence converging to 0. So ((¢,) — (z)) € J. Thus,
Limj((cn) — (x)) = 0. Hence, Limj(c,) = Limy(z) = x.

Part 4. The answer is no. Indeed, take the sequences ((—1)") and ((— 1)"“). Then, if
Lims(((=1)")) = Limy(((—=1)"*1)), we have Lim;(((=1)")) — ((-=1)"*1)) = 0. But, clearly
Limy(((=1)")) — ((=1)"*1)) = Lim(2(—1)") = 2 or —2, depending on J.
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