## Core Algebra: Lecture 4, Isomorphism Theorems<sup>1</sup>

Read Along:

Selick's notes: 1.1, 1.2.1, 1.4

Lang's book: I.1-3.

Recall from last time: For H < G,  $G/H = \{[g]_H = \overline{g} = gH\}$ .

 $g_1 \sim g_2 \Leftrightarrow [g_1] = [g_2] \Leftrightarrow g_2 = g_1 h, \ h \in H$ 

If H is finite,  $|[g]_H| = |H|$  so we get:

**Theorem 2.1.** (Lagrange's Theorem) If G is finite,  $|H| \mid |G|$  and

|G| / |H| = |G/H| = (G : H) "the index of H in G"

If  $N \triangleleft G$   $(N^g = N)$  then G/N is a group.

**Theorem 2.2.** (First Isomorphism Theorem) If  $\phi : G \to H$  is a morphism, then:

 $G/ker\phi \cong im\phi$ 

Also, if  $\phi: G \to G/N = im\phi$  then  $ker\phi = N$ .

Goal:

**Theorem 2.3.** (Jordan-Hölder Theorem) If G is finite, then we can write

 $G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \ldots \triangleright G_n = \{e\}$ 

where  $G_i/G_{i+1}$  is "simple", i.e. has no normal subgroups and any two such towers are "equivalent".

**Definition 2.4.** For K < G,  $N_G(K) := \{g \in G : K^g = K\}$ .

**Theorem 2.5.** (Second Isomorphism Theorem) If  $H, K < G, H < N_G(K)$ , then:

- 1.  $N_G(K)$  is a group
- 2.  $K < N_G(K)$
- 3.  $N_G(K) = G \Leftrightarrow K$  is normal

and also:

 $H \cap K \triangleleft H, K \triangleleft HK$  (which is a group) and  $HK/K \cong H/H \cap K$ 

For a diagram presentation, see Figure 1.

<sup>&</sup>lt;sup>1</sup>Notes from Professor Bar-Natan's Fall 2010 Algebra I class. All the mistakes are mine, please let me know if you find any! (ivahal@math.toronto.edu)



Fig. 1. The Second Isomorphism Theorem.



Fig. 2. The Fourth Isomorphism Theorem.

*Proof.* The steps are as follows:

- 1.  $H \cap K$  is a group.
- 2.  $H \cap K$  is normal in H.
- 3. HK is a group. Take any  $h_1, h_2 \in H$  and  $k_1, k_2 \in K$ . Then  $h_1k_1, h_2k_2 \in HK$  and:  $h_1k_1h_2k_2 = h_1h_2h_2^{-1}k_1h_2k_2 = h_1h_2k_1^{h_2}k_2 \in HK$  since  $h_1h_2 \in H$  and  $k^{h_2}k_2 \in K$
- 4.  $K \triangleleft HK$ . Consider  $k_1 \in K$  and  $hk_2 \in HK$ . Then,  $k_1^{hk_2} = (k_1^h)^{k_2} \in K$ .
- 5. Define  $\phi([h]_{H\cap K}) = [h]_K$ .
  - a) Well-defined? For  $t \in H \cap K \subset K$ ,  $ht \mapsto [ht]_K = [h]_K$  so yes.
  - b) Morphism? (easy)
- 6. Define  $\psi([hk]_k) = [h]_{H \cap K}$ . It is again easy to see this is well defined and a morphism.
- 7.  $\phi, \psi$  are inverses of each other.

**Theorem 2.6.** (Third Isomorphism Theorem) If  $G \triangleright H$ , H > N,  $G \triangleright N$ , then:

 $G/N \triangleright H/N$  and  $(G/N)/(H/N) \cong G/H$ 

*Proof.* The first part is left as an exercise and for the second, define:

$$\begin{split} \phi : (G/N)/(H/N) &\to G/H \\ & [[g]_N]_{H/N} &\mapsto [g]_H \\ & \text{and } \psi : G/H &\to (G/N)/(H/N) \\ & [g]_H &\mapsto [[g]_N]_{H/N} \end{split}$$

It is easy to see that these two maps are well-defined, morphisms and are inverses.  $\hfill\square$ 

**Theorem 2.7.** (Fourth Isomorphism Theorem) If  $N \triangleleft G$ , then there is a bijection between subgroups of G that contain N and subgroups of G/N. This bijection preserves "subgroup", indices, intersections.

For a diagram illustration see Figure 2.