## Core Algebra: Lecture 4, Isomorphism Theorems ${ }^{1}$

Read Along:
Selick's notes: 1.1, 1.2.1, 1.4
Lang's book: I.1-3.
Recall from last time: For $H<G, G / H=\left\{[g]_{H}=\bar{g}=g H\right\}$.

$$
g_{1} \sim g_{2} \Leftrightarrow\left[g_{1}\right]=\left[g_{2}\right] \Leftrightarrow g_{2}=g_{1} h, h \in H
$$

If $H$ is finite, $\left|[g]_{H}\right|=|H|$ so we get:
Theorem 2.1. (Lagrange's Theorem) If $G$ is finite, $|H|||G|$ and

$$
|G| /|H|=|G / H|=(G: H) \text { "the index of } H \text { in } G \text { " }
$$

If $N \triangleleft G\left(N^{g}=N\right)$ then $G / N$ is a group.
Theorem 2.2. (First Isomorphism Theorem) If $\phi: G \rightarrow H$ is a morphism, then:

$$
G / \operatorname{ker} \phi \cong i m \phi
$$

Also, if $\phi: G \rightarrow G / N=$ im $\phi$ then $\operatorname{ker} \phi=N$.
Goal:
Theorem 2.3. (Jordan-Hölder Theorem) If $G$ is finite, then we can write

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \triangleright \ldots \triangleright G_{n}=\{e\}
$$

where $G_{i} / G_{i+1}$ is "simple", i.e. has no normal subgroups and any two such towers are "equivalent".

Definition 2.4. For $K<G, N_{G}(K):=\left\{g \in G: K^{g}=K\right\}$.
Theorem 2.5. (Second Isomorphism Theorem) If $H, K<G, H<N_{G}(K)$, then:

1. $N_{G}(K)$ is a group
2. $K<N_{G}(K)$
3. $N_{G}(K)=G \Leftrightarrow K$ is normal
and also:
$H \cap K \triangleleft H, K \triangleleft H K(w h i c h ~ i s ~ a ~ g r o u p) ~ a n d ~ H K / K \cong H / H \cap K$
For a diagram presentation, see Figure 1.

[^0]

Fig. 1. The Second Isomorphism Theorem.


Fig. 2. The Fourth Isomorphism Theorem.

Proof. The steps are as follows:

1. $H \cap K$ is a group.
2. $H \cap K$ is normal in $H$.
3. $H K$ is a group.

Take any $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. Then $h_{1} k_{1}, h_{2} k_{2} \in H K$ and:

$$
h_{1} k_{1} h_{2} k_{2}=h_{1} h_{2} h_{2}^{-1} k_{1} h_{2} k_{2}=h_{1} h_{2} k_{1}^{h_{2}} k_{2} \in H K \text { since } h_{1} h_{2} \in H \text { and } k^{h_{2}} k_{2} \in K
$$

4. $K \triangleleft H K$.

Consider $k_{1} \in K$ and $h k_{2} \in H K$. Then, $k_{1}^{h k_{2}}=\left(k_{1}^{h}\right)^{k_{2}} \in K$.
5. Define $\phi\left([h]_{H \cap K}\right)=[h]_{K}$.
a) Well-defined? For $t \in H \cap K \subset K$, $h t \mapsto[h t]_{K}=[h]_{K}$ so yes.
b) Morphism? (easy)
6. Define $\psi\left([h k]_{k}\right)=[h]_{H \cap K}$.

It is again easy to see this is well defined and a morphism.
7. $\phi, \psi$ are inverses of each other.

Theorem 2.6. (Third Isomorphism Theorem) If $G \triangleright H, H>N, G \triangleright N$, then:

$$
G / N \triangleright H / N \text { and }(G / N) /(H / N) \cong G / H
$$

Proof. The first part is left as an exercise and for the second, define:

$$
\begin{aligned}
\phi:(G / N) /(H / N) & \rightarrow G / H \\
{\left[[g]_{N}\right]_{H / N} } & \mapsto[g]_{H} \\
\text { and } \psi: G / H & \rightarrow(G / N) /(H / N) \\
{[g]_{H} } & \mapsto\left[[g]_{N}\right]_{H / N}
\end{aligned}
$$

It is easy to see that these two maps are well-defined, morphisms and are inverses.
Theorem 2.7. (Fourth Isomorphism Theorem) If $N \triangleleft G$, then there is a bijection between subgroups of $G$ that contain $N$ and subgroups of $G / N$. This bijection preserves "subgroup", indices, intersections.

For a diagram illustration see Figure 2.


[^0]:    ${ }^{1}$ Notes from Professor Bar-Natan's Fall 2010 Algebra I class. All the mistakes are mine, please let me know if you find any! (ivahal@math.toronto.edu)

