Theorems of Chapter 15:

• **Definition:** Suppose $\phi R \rightarrow S$, where R and S are rings

If: $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a) \phi(b)$ $\forall a, b \in \mathbb{R}$ Then: ϕ is a Ring *Homomorphism*

In addition, if ϕ is 1:1 and onto, then ϕ is a Ring Isomorphism

- $k \rightarrow k \text{ mod } n \text{ is called the } natural ring homomorphism that takes <math display="inline">Z \rightarrow Z_n$
- Theorem 15.2 Kernals are Ideals Let $\phi: R \rightarrow S$ be a ring homomorphism Then Ker $\phi = \{ r \in R : \phi(r) = 0 \}$ is an ideal of R

• Theorem 15.3 First Isomorphism Theorem for Rings Let $\phi: \mathbb{R} \to S$ be a ring homomorphism

Then $R/Ker \phi \approx \phi(R)$

- Theorem 15.4 Ideals are Kernals Suppose I = ideal of R Then I = Kernal of a ring homomorphism In particular, Ideal A is the kernel of $\phi: R \rightarrow R/A$
- Theorem 15.5 Homomorphism from Z to a ring with unity Let R be a ring with unity Then $\phi: Z \rightarrow R, n \rightarrow n.1$ is a ring homomorphism
- Corollary 1 A ring with unity contains Z_n or Z Suppose R is a ring with unity, if:
 - 1. char R = n > 0 \Rightarrow R has a subring isomorphic to Z_n
 - 2. char R = 0 \Rightarrow R has a subring isomorphic to Z
- Corollary 2 Z_m is a homomorphic image of Z Suppose $\phi: Z \to Z_m$ given by $x \to x \mod m \forall$ positive integer m Then ϕ is a ring homomorphism
- Corollary 3 A field contains Zp or Q Suppose F is a field, if:

 char F = p
 char F = 0
 F has a subfield isomorphic to Z_p
 f has a subfield isomorphic to Q
- Theorem 15.6 Field of Quotients
 Let D = integral domain
 Then ∃ field of quotient of D (F), such that F contains a subring isomorphic to D