1. The Simplicity of the Alternating Groups

This handout is to be read twice: first read red only, to ascertain that everything in red is easy and boring, then read black and red , to actually understand the proof.

Theorem 1.1. The alternating group $A_{n} \unlhd S_{n}$ is simple for $n \neq 4$.
Remark 1.2. Easy for $n \leq 3$, false for $n=4$ as there is $\phi: A_{4} \rightarrow A_{3}$, so assume $n \geq 5$.

Lemma 1.3. Every element of A_{n} is a product of 3-cycles.
Proof: Every $\sigma \in A_{n}$ is a product of an even number of 2-cycles, and $(12)(23)=(123)$ and $(123)(234)=(12)(34)$.

Lemma 1.4. If $N \unlhd A_{n}$ contains a 3-cycle, then $N=A_{n}$.
Proof: WLOG, (123) $\in N$. Then for all $\sigma \in S_{n},(123)^{\sigma} \in N$:
If $\sigma \in A_{n}$, this is clear. otherwise $\sigma=(12) \sigma^{\prime}$ with $\sigma \in A_{n}$, and then as $(123)^{(12)}=(123)^{2},(123)^{\sigma}=\left((123)^{2}\right)^{\sigma^{\prime}} \in N$. So N contains all 3 -cycles.

Case 1. N contains an element with cycle of length ≥ 4.
Resolution. $\sigma=(123456)^{\sigma^{\prime}} \in N \Rightarrow \sigma^{-1}(123) \sigma(123)^{-1}=(136) \in N$.
Case 2. N contains an element with 2 cycles of length 3.
Resolution. $\sigma=(123)(456)^{\sigma^{\prime}} \in N \Rightarrow \sigma^{-1}(124) \sigma(124)^{-1}=(14263)$ $\in N$.

Case 3. N contains $\sigma=(123)$ (a product of disjoint 2-cycles).
Resolution. $\sigma^{2}=(132) \in N$.
Case 3. Every element of N is a product of disjoint 2-cycles.
Resolution. $\sigma=(12)(34)^{\sigma^{\prime}} \Rightarrow \sigma^{-1}(123) \sigma(123)^{-1}=(13)(24)=\tau \in \in N$ $\Rightarrow \tau^{-1}(125) \tau(125)^{-1}=(13452) \in N$.

