MAT1100 Summary of major results

Xin Qi

December 13, 2014

This is a summary of the major results we covered over the course. A few proofs are also included.

CONTENTS

1	Gro	ups	2			
	1.1	Basic results in groups	2			
	1.2	Sylow Theorems				
	1.3	Semi-direct products	4			
2	Ring	gs	5			
	2.1	Basic results of rings	5			
	2.2	UFDs, PIDs, Euclidean Domains	5			
3	Modules					
	3.1	Basic results of modules	6			
	3.2	Tensor products	7			
4	Loca	alization and fields of fractions	7			

1 GROUPS

1.1 BASIC RESULTS IN GROUPS

Definition 1.1. Let *G* be a group, $g, h \in G$. Conjugation of g by $h(g^h)$ is the element $h^{-1}gh$.

Definition 1.2. Let *G* be a group, N < G. *N* is a normal subgroup of G ($N \lhd G$) if for every $g \in G$, $N^g = \{g^{-1}ng : n \in N\} = N$.

Remark 1.3.

- Every $N \triangleleft G$ is the kernel of some surjective homomorphism $\varphi : G \rightarrow H$. (Construct an equivalence relation on elements of G, $g_1 \ g_2$ if $g_1^{-1}g_2 \in N$, let H = G/ and do the natural thing.)
- For any K < G, |K| | |G|.

Theorem 1.4. First Isomorphism Theorem $\phi : G \to H$ is a group homomorphism then $G / \ker(\phi) \cong im(\phi)$.

Proof. Define $R: G/\ker(\phi) \to im(\phi)$ by $R([g]) = \phi(g)$ and check it is well-defined. Define $L: im(\phi) \to G/\ker(\phi)$ by L(h) = [g] and check that it is also well-defined. Show the two maps are homomorphism and the two compositions are identities.

Remark 1.5. H, K < G. $HK = \{hk : h \in H, k \in K\}$. $HK < G \Leftrightarrow HK = KH$.

Definition 1.6. *G* is a group, *X* a subset of *G*.

- Normalizer: $N_G(X) = \{g \in G : X^g = X\}$
- Centralizer: $C_G(X) = \{g \in G : \forall x \in X, gx = xg\} = \{g \in G : \forall x \in X, x^g = x\}$
- Center: $Z(G) = C_G(G)$

Proposition 1.7. *If* $H < H_G(K)$ *then* HK = KH, $K \lhd HK$, *and* $H \cap K \lhd H$.

Proof.

- $H < N_G(K)$, so $\forall h \in H$, hK = Kh. Then $\bigcup_{h \in H} hK = HK$ and $\bigcup_{h \in H} Kh = KH$. Thus HK = KH (consequently a group).
- $K^{hk} = (K^h)^k = K^k = K$
- $a \in H \cap K$ then $a^h \in H^h = H$, $a^h \in K^h = K$. So $a^h \in H \cap K$.

Theorem 1.8. Second Isomorphism Theorem for Groups *G* is a group, $H, K < G, H < N_G(K)$. Then $HK/K \cong H/H \cap K$.

Proof. Define $R: HK/K \to H/H \cap K$, $R([hk]_K) = [h]_{H \cap K}$. It's well-defined, consider $h_1k_1 h_2k_2$, so $h_1k_1k' = h_2k_2$. We want $[h_1]_{H \cap K} = [h_2]_{H \cap K}$, equivalently $h_1^{-1}h_2 \in H \cap K$. Well $h_1^{-1}h_2 \in H$, and $h_1k_1k'k_2^{-1} = h_2$, so $h_1^{-1}h_2 = h_1^{-1}h_1k_1k'k_2^{-1} = k_1k'k_2^{-1} \in K$. Define $L: H/H \cap K \to HK/K$, $L([h]_{H \cap K}) = [h]_K$. It's well-defined since $H \cap K \subseteq K$. Check that R, L are multiplicative and inverses of each other.

Theorem 1.9. Third Isomorphism Theorem for Groups *G* is a group, $H, K \triangleleft G, K < H$. Then $\frac{G/K}{H/K} \cong G/H$. In particular $H/K \triangleleft G/K$.

Proof. Define $R: \frac{G/K}{H/K} \to G/H$, $R([[g]_K]_{H/K}) = [g]_H$. Define $L: G/H \to \frac{G/K}{H/K}$, $L([g]_H) = [[g]_K]_{H/K}$. Check they are well-defined, multiplicative, and inverses of each other.

Theorem 1.10. Fourth Isomorphism Theorem for Groups *G* is a group, $N \triangleleft G$. Then $\pi : G \rightarrow G/H$ induces a faithful bijection between subgroups $\{H : N < H < G\}$ and subgroups of G/N. Faithfully means N < A < B < G implies $\pi(A) < \pi(B)$, $A \triangleleft B$ implies $\pi(A) \triangleleft \pi(B)$, and $\pi(A \cap B) = \pi(A) \cap \pi(B)$.

Definition 1.11. A nontrivial group *G* is simple if the only subgroups of *G* are *G* and {1}.

Proposition 1.12. \mathbb{Z}/n is simple \Leftrightarrow *n* is prime.

Theorem 1.13. Jordan-Hölder Let *G* be a finite group then there exists a sequence of the following form:

$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = 1$$

such that $H_i = G_i/G_{i+1}$ is simple, and the sequence of H_i 's (called the composition series of G) is unique up to a permutation.

Remark 1.14. You cannot reconstruct G from the H_i 's.

Definition 1.15. Given, $\sigma \in S_n$, the sign of σ is the parity of the number of transpositions required to write σ as a product of those transpositions.

Corollary 1.16.

- σ and σ' are conjugates if and only if they have the same list of cycle lengths.
- The number of conjugacy classes in S_n is the number of partitions of n.

Theorem 1.17. $A_n \triangleleft S_n$ is simple for n = 3 or $n \ge 5$.

Definition 1.18. Given a group *G*, a (left) *G*-Set is a set *X* along with a (left) action of *G* on *X* i.e. a map \bullet : $G \times X \to X$ such that

- 1. $\forall x \in X, 1_G \bullet x = x$
- 2. $\forall g_1, g_2 \in G, \forall x \in X, g_1 \bullet (g_2 \bullet x) = (g_1g_2) \bullet x$

Definition 1.19.

- A *G*-Set is transitive if $\forall x, y \in X$, there exist $g \in G$ such that $g \bullet x = y$.
- Stab_X(x) = $g \in G$: gx = x
- The orbit of $x \in X$ is Gx.

Theorem 1.20.

- 1. Every G-Set is a disjoint union of transitive G-Sets.
- 2. *if* X *is a transitive* G-Set, then $X \cong G/Stab_X(x)$ with $x \in X/$.

Theorem 1.21. If X is a G-Set, and x_i are representatives of the orbits of X, then $|X| = \sum_i |Gx_1| = \sum_i \frac{|G|}{|Stab_X(x_i)|}$. (X, G finite).

Corollary 1.22. In the case where G acts on itself by conjugation, then G equals the union of the conjugacy classes. Let y_i be the representatives of the conjugacy classes of size greater than 1, then we have the class equation:

$$|G| = |Z(G)| + \sum_{i} \frac{|G|}{|C_G(y_i)|}$$

Theorem 1.23. If G is a group of order p^{α} , where p is prime then Z(G) is nontrivial.

Proof. Look at the class equation and conclude that |Z(G)| is divisible by *p*.

1.2 Sylow Theorems

For this subsection, *G* is finite, *p* is prime, $|G| = p^{\alpha}m$ where $p \nmid m$.

Definition 1.24. $Syl_p(G) = \{P < G : |P| = p^{\alpha}\}$

Lemma 1.25. Cauchy's Theorem If G is a finite Abelian group of order divisible by p, then G contains an element of order p.

Theorem 1.26. Sylow theorems 1-3

- 1. $Syl_p(G) \neq \emptyset$
- 2. Every *p*-subgroup (subgroup of *G* with order of every element being a power of *p*) of *G* is contained in some Sylow-*p* subgroup of *G*.
- 3. All Sylow-p subgroups of G are conjugate. Define $n_p(G) := |Syl_p(G)|$, then $n_p(G) | |G|$ and $n_p(G) = 1 \mod p$.

Remark 1.27. A group of order *p* is isomorphic to \mathbb{Z}/p .

Remark 1.28. If gcd(a, b) = 1 then $\mathbb{Z}/a \times \mathbb{Z}/b \cong \mathbb{Z}/ab$.

1.3 SEMI-DIRECT PRODUCTS

Given N, H < G, we want to compare $N \times H$ with NH. There is always a map $\mu : N \times H \rightarrow NH$ but in general there is not much to be said about μ .

Definition 1.29. If *N*, *H* are arbitrary groups, and $\phi : H \to Aut(N)$ is a homomorphism. Denote the semi-direct product of *N* and *H* relative to ϕ as $N \rtimes_{\phi} H$. Where $N \rtimes_{\phi} H = \{nh : n \in N, h \in H\}$ with the product $(n_1h_1)(n_2h_2) = (n_1\phi_{h_1}(n_2)n_2)(h_1h_2)$

Proposition 1.30.

- 1. $N \rtimes H$ is indeed a subgroup with $e_{N \rtimes H} = e_N e_H = e$
- 2. $H < N \rtimes H$
- 3. $N \lhd N \rtimes H, N \rtimes H/N \cong H$
- 4. $N \cap H = e, n^{h^{-1}} = \phi_h(n)$

Theorem 1.31. If G = NH, $N \triangleleft G$, H < G, $H \cap N = e$, then $G \cong N \rtimes_{\phi} H$ where $\phi_h(n) = n^h$

2 Rings

2.1 BASIC RESULTS OF RINGS

Remark 2.1. The evaluation map $(ev_u : R[x] \rightarrow R)$, is a ring homomorphism provided *R* is commutative.

Theorem 2.2. Cayley-Hamilton *A matrix annihilates its characteristic polynomial. Let A be a* $n \times n$ matrix over a commutative ring *R*, let χ_A be the characteristic polynomial of *A* ($\chi_A(t) = \det(tI - A)$), then $\chi_A(A) = 0$.

Definition 2.3. An ideal *I* of a ring *R* is proper if $I \neq R \Leftrightarrow 1 \notin I$.

Remark 2.4. Every proper ideal is the kernel of some ring homomorphism.

Theorem 2.5. Ring Isomorphism Theorems 1-4

- 1. $\varphi: R \to S \text{ a ring homomorphism, then } R/\ker(\varphi) \cong im(\varphi).$
- 2. A is a subring of R, I an proper ideal, then $\frac{A+I}{I} = \frac{A}{A \cap I}$.
- 3. $I \subset J \subset R$ are proper ideals, then $\frac{R/I}{I/I} \cong R/J$.
- 4. Given a proper ideal I of R, there is a bijection between ideals J where $I \subset J \subset R$ and ideals of R/I.

From now on *R* is commutative.

Theorem 2.6. $I \subset R$ is maximal $\Leftrightarrow R/I$ is a field.

Theorem 2.7. Every proper ideal in any ring is contained in a maximal ideal.

Proposition 2.8. R/I is a field $\Leftrightarrow I$ is maximal.

Theorem 2.9. A maximal ideal is prime.

2.2 UFDs, PIDs, EUCLIDEAN DOMAINS

From now on *R* is commutative and a domain.

Definition 2.10. $a, b \in R$ are associates $(a \ b)$ if $a \mid b$ and $b \mid a$.

Proposition 2.11. If q, q' are both gcd of a and b, then q q'

Definition 2.12.

- Given $x \notin R^{\times}$, $x \neq 0$, x is irreducible if $x = ab \Rightarrow a \in R^{\times}$ or $b \in R^{\times}$.
- Given $p \notin R^{\times}$, $x \neq 0$, *p* is prime if $p \mid ab \Rightarrow p \mid a$ or $p \mid b$.

Proposition 2.13. *p* is prime implies *p* is irreducible.

Theorem 2.14. Given a UFD R, $x \in R \setminus 0$ can be written as a product of primes and a unit i.e. $x = up_1 \dots p_n$, and this factorization is unique up to a permutation and units.

Proposition 2.15. In a UFD, x is prime if and only if x is irreducible.

Proposition 2.16. *R* is a UFD if and only if every nonzero $x \in R$ has a unque decomposition into irreducibles.

Theorem 2.17. gcd always exists in UFDs.

Theorem 2.18. We have the following chain of implications: R is an Euclidean domain \Rightarrow R is a PID \Rightarrow R is a UFD.

Proposition 2.19. A PID is Noetherian, that is every descending sequence of ideals in R is eventually constant.

Proposition 2.20. *In a PID, < a, b* >= < gcd(*a, b*) >.

Definition 2.21. A Dedekind-Hasse (D-H) norm on *R* is a function $d : R \setminus \{0\} \to \mathbb{N}_{>0}$ such that if $a, b \neq 0$, either $b \mid a$ or there exist $x \in \langle a, b \rangle \setminus 0$ with d(x) < d(a).

Theorem 2.22. *R* is a PID \Leftrightarrow it has a *D*-*H* norm.

Theorem 2.23. Let *R* be an UFD, g = gcd(a, b), l = lcm(a, b), $l = \frac{ab}{g}$. If g = sa + tb (guaranteed in a PID) then

$$R/ < a > \oplus R/ < b > \cong R/ < g > \oplus R/ < l >$$

In particular, if g = 1, l = ab, then $R | < a > \oplus R | < b > \cong R | < ab >$

3 MODULES

3.1 BASIC RESULTS OF MODULES

Definition 3.1. A module *M* over a ring *R* is a set *M* with $0 \in M$, $+: M \times M \rightarrow M$, $\bullet: R \times M \rightarrow M$ such that

- 1. (M, +, 0) is an Abelian group.
- 2. 1m = m, a(bm) = (ab)m.
- 3. (a+b)m = am + bm, a(m+n) = am + an.

Given a submodule *N* of *M*, we have M/N where $m_1 m_2$ if $m_1 - m_2 \in N$.

Theorem 3.2. Modules Isomorphism Theorem 1-4

- 1. Given $\varphi : M \to N$, $M / \ker(\varphi) \cong im(\varphi)$.
- 2. $A, B \subset M, \frac{A+B}{B} \cong \frac{A}{A \cap B}$
- 3. $A \subset B \subset M$, $\frac{M/A}{B/A} \cong M/B$
- 4. Given a submodule N of M, there is a bijection between ideals J where $N \subset J \subset M$ and ideals of M/N.

Theorem 3.3. Structure theorem for finitely generated modules over a PID *If M is a finitely generated module over a PID R, then*

$$M \cong R^k \oplus \bigoplus_{i=1}^n R / < p_i^{s_i} >$$

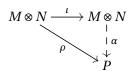
where the p_i are prime, $s_i \in \mathbb{Z}_{>0}$. Furthermore k is unique and the decomposition is unique up to an permutation of the $R / < p_i^{s_i} > s$.

Corollary 3.4. Jordan Normal Form *Over an algebraically closed field, every square matrix is conjugate to a matrix with Jordan blocks down the diagonal. Jordan blocks are blocks of the form:*

[λ	0				0
1	λ	 λ · ·			÷
0	1	λ	·		÷
:	·	·	·	••.	÷
:		·	·	·	0
0	•••		0	1	λ

3.2 TENSOR PRODUCTS

Definition 3.5. Given two *R*-modules *M*, *N*, we define the tensor product $M \otimes N$ to be a module along with a bilinear map $\iota: M \times N \to M \otimes N$ such that the following diagram commute:



That is, given any map ρ from $M \times N$ to P, there exist a unique map α from $M \otimes N$ to P such that $\rho = \alpha \iota$.

Theorem 3.6. $M \otimes N$ exists and is unique up to an isomorphism.

4 LOCALIZATION AND FIELDS OF FRACTIONS

Definition 4.1. *R* is a domain, $S \subset R \setminus \{0\}$ is multiplicative if $1 \in S$, and $s_1, s_2 \in S$ implies $s_1 s_2 \in S$.

Definition 4.2. Define $S^{-1}R := \{\frac{r}{s} : r \in R, s \in S\}/(s_2r_1 = s_1r_2, 0 = \frac{0}{1}, 1 = \frac{1}{1}, \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}, \frac{a}{b}\frac{c}{d} = \frac{ac}{bd}\}$. $S^{-1}R$ is called the localization of *R* at *S*.