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This is a summary of the major results we covered over the course. A few proofs
are also included.

CONTENTS

(1.1  Basicresultsin groups| . . . . . . . .. . . . i e
1.2 SylowTheorems| . . . . . .. ... ... . e
(1.3 Semi-directproducts| . . . . .. .. ... . ...

2 Rings
[2.1 Basicresultsofrings|. . . . .. ... ... ... . e
[2.2 UEFDs, PIDs, Euclidean Domains| . . ... ... ... .. ... ... ...,

3__Modules

[3.2 Tensorproducts| . . . . . . ... . . ... e e e

I Tocalizad {fields of frachi

LS ST\

[S203) ]



1 GROUPS
1.1 BASIC RESULTS IN GROUPS
Definition 1.1. Let G be a group, g, h € G. Conjugation of g by h (g") is the element 1~ gh.

Definition 1.2. Let G be a group, N < G. N is a normal subgroup of G (N <1 G) if for every g € G,
N8 ={glng:neN}=N.

Remark 1.3.

* Every N <G is the kernel of some surjective homomorphism ¢ : G — H. (Construct an
equivalence relation on elements of G, g g if g, lg, € N, let H= G/ and do the natural
thing.)

e Forany K <G, |K]|1Gl|.

Theorem 1.4. First Isomorphism Theorem ¢ : G — H is a group homomorphism then G/ ker(¢) =

im(@).

Proof. Define R : G/ ker(¢p) — im(¢p) by R([g]) = ¢(g) and check it is well-defined. Define L :
im(¢p) — G/ker(¢) by L(h) = [g] and check that it is also well-defined. Show the two maps are
homomorphism and the two compositions are identities. O

Remark 1.5. H K<G. HK={hk:he H ke K}. HK<G< HK=KH.
Definition 1.6. G is a group, X a subset of G.
e Normalizer: Ng(X) ={ge G: X8 = X}
e Centralizer: Cq(X)={ge G:Vxe X,gx=xgl={geG:Vxe X, x& = x}
e Center: Z(G) = Cg(G)
Proposition 1.7. IfH < Hg(K) then HK = KH, K<THK, and HNK < H.
Proof.

* H< Ng(K),soVhe H, hK = Kh. Then Upeg hK = HK and Upey Kh = KH. Thus HK =
K H (consequently a group).

e ac HNKthena" e H"=H, a" € K" =K. So a" € HNK.
O

Theorem 1.8. Second Isomorphism Theorem for Groups G is a group, H,K < G, H < Ng(K).
Then HK/K = H/HNK.

Proof. Define R: HK/K — H/HNK, R([hklk) = [hlunk. It's well-defined, consider h; k; haoko,
s0 hikik' = hoko. We want [m]unk = [h2lpnk, equivalently h;lhg € HNK. Well h;lhg € H,
and hik1K'k;! = hy, so hi'hy, = hy'mkikK'k;! = kik'k;! € K. Define L: H/HNK — HK/K,
L([hlgnk) = [hlk. It's well-defined since HNK < K. Check that R, L are multiplicative and in-
verses of each other. O



Theorem 1.9. Third Isomorphism Theorem for Groups G is a group, H, K <G, K < H. Then

YK = G/H. In particular HIK < G/K.

Proof. Define R: 28 — G/H, R([[g]k]n/x) = [g]n. Define L: G/ H — SK " L((g]1) = l1glkI ik

Check they are well-defined, multiplicative, and inverses of each other. O

Theorem 1.10. Fourth Isomorphism Theorem for Groups G is a group, N<\G. Thenn:G— G/ H
induces a faithful bijection between subgroups {H : N < H < G} and subgroups of G/ N. Faithfully
means N < A< B < G impliesn(A) <n(B), A<B impliesn(A) <n(B), andn(ANB) =n(A)Nn(B).

Definition 1.11. A nontrivial group G is simple if the only subgroups of G are G and {1}.
Proposition 1.12. Z/n is simple < n is prime.

Theorem 1.13. Jordan-Holder Let G be a finite group then there exists a sequence of the following
form:
G=Gy >G> >Gy=1

such that H; = G;/G;41 is simple, and the sequence of H;’s (called the composition series of G) is
unique up to a permutation.

Remark 1.14. You cannot reconstruct G from the H;’s.

Definition 1.15. Given, o € S, the sign of 0 is the parity of the number of transpositions required
to write o as a product of those transpositions.

Corollary 1.16.
* g and o' are conjugates if and only if they have the same list of cycle lengths.
* The number of conjugacy classes in S, is the number of partitions of n.
Theorem 1.17. A, <S, issimpleforn=3 orn=5.

Definition 1.18. Given a group G, a (left) G-Set is a set X along with a (left) action of G on X i.e.
amap ¢ : G x X — X such that

1. VxeX, lgex=x
2. Vg1,82€G,VxeX, g1o(g2ex)=(8182) X
Definition 1.19.
* A G-Setis transitive if Vx, y € X, there exist g€ Gsuch that ge x = y.
e Stabx(x)=ge€G:gx=x
e The orbit of x € X is Gx.
Theorem 1.20.
1. Every G-Set is a disjoint union of transitive G-Sets.

2. if X is a transitive G-Set, then X = G/ Stabx (x) with x € X/.



Theorem 1.21. If X is a G-Set, and x; are representatives of the orbits of X, then | X| =) |Gx;| =
i

G .
)3 m- (X, G finite).
L

Corollary 1.22. In the case where G acts on itself by conjugation, then G equals the union of the
conjugacy classes. Let y; be the representatives of the conjugacy classes of size greater than 1, then
we have the class equation:

G
GI=12@1+ ) |cc|;(;)|

Theorem 1.23. IfG is a group of order p®, where p is prime then Z(G) is nontrivial.

Proof. Look at the class equation and conclude that | Z(G)| is divisible by p. O

1.2 SyYLow THEOREMS
For this subsection, G is finite, p is prime, |G| = p*m where p { m.
Definition 1.24. Syl,(G) ={P <G:|P|= p%}

Lemma 1.25. Cauchy’s Theorem If G is a finite Abelian group of order divisible by p, then G
contains an element of order p.

Theorem 1.26. Sylow theorems 1-3
L Syl,(G)# @

2. Every p-subgroup (subgroup of G with order of every element being a power of p) of G is
contained in some Sylow-p subgroup of G.

3. All Sylow-p subgroups of G are conjugate. Define ny(G) :=|Syl,(G)|, then n,(G) | |G| and
ny(G)=1 mod p.

Remark 1.27. A group of order p is isomorphic to Z/p.
Remark 1.28. If gcd(a,b) =1thenZ/ax Z/b= Z/ab.

1.3 SEMI-DIRECT PRODUCTS

Given N, H < G, we want to compare N x H with NH. Thereis alwaysamap yu: Nx H— NH
but in general there is not much to be said about p.

Definition 1.29. If N, H are arbitrary groups, and ¢ : H — Aut(N) is a homomorphism. Denote
the semi-direct product of N and H relative to ¢ as N Xy H. Where N Xy H={nh:n€ N,he H}
with the product (11 h1) (n2hy) = (n1¢y, (n2)n2) (hy hy)

Proposition 1.30.
1. N x H isindeed a subgroup with enxy = eney =e
2. H<NxH
3. NANxH,NxH/IN=H
4. NNH=e,n"" =¢,n)
Theorem 1.31. [fG=NH, N<1G, H<G, H\N=e, thenG= N ¢ H where ¢p(n) = nh



2 RINGS

2.1 BASIC RESULTS OF RINGS

Remark 2.1. The evaluation map (ev,, : R[x] — R), is a ring homomorphism provided R is com-
mutative.

Theorem 2.2. Cayley-Hamilton A matrix annihilates its characteristic polynomial. Let A be a
n x n matrix over a commutative ring R, let ya be the characteristic polynomial of A (xa(t) =
det(tI— A)), then y4a(A) =0.

Definition 2.3. Anideal I of aring R is properif /[ #R < 1¢ 1.
Remark 2.4. Every proper ideal is the kernel of some ring homomorphism.
Theorem 2.5. Ring Isomorphism Theorems 1-4
1. ¢ :R— S aring homomorphism, then R/ ker(¢p) = im(yp).
A+l _ _A

2. Aisasubring of R, I an proper ideal, then =~ = 77

. RIT ~
3. I c J c R are proper ideals, then I = R/].

4. Given a proper ideal I of R, there is a bijection between ideals ] where I c ] c R and ideals
ofR/I.

From now on R is commutative.
Theorem 2.6. I c R is maximal < R/I is a field.
Theorem 2.7. Every proper ideal in any ring is contained in a maximal ideal.
Proposition 2.8. R/I is a field < I is maximal.

Theorem 2.9. A maximal ideal is prime.

2.2 UFDs, PIDs, EUCLIDEAN DOMAINS

From now on R is commutative and a domain.
Definition 2.10. a,b € R are associates (a b)ifa|band b | a.
Proposition 2.11. Ifq,q’ are both gcd of a and b, then q q'
Definition 2.12.

e Given x ¢ R*,x #0, x is irreducible if x=ab=ae€ R* or be R*.

e Given p¢ R*,x#0, pisprimeif p|lab=>p|aorp|b.
Proposition 2.13. p is prime implies p is irreducible.

Theorem 2.14. Given a UFD R, x € R\0O can be written as a product of primes and a unit i.e.
X =up; ... pn, and this factorization is unique up to a permutation and units.

Proposition 2.15. In a UFD, x is prime if and only if x is irreducible.



Proposition 2.16. R is a UFD if and only if every nonzero x € R has a unqiue decomposition into
irreducibles.

Theorem 2.17. gcd always exists in UFDs.

Theorem 2.18. We have the following chain of implications: R is an Euclidean domain = Risa
PID= Risa UFD.

Proposition 2.19. A PID is Noetherian, that is every descending sequence of ideals in R is eventu-
ally constant.

Proposition 2.20. Ina PID, < a,b >=<gcd(a, b) >.

Definition 2.21. A Dedekind-Hasse (D-H) norm on R is a function d : R\{0} — N such that if
a,b #0, either b | a or there exist x e< a, b > \0 with d(x) < d(a).

Theorem 2.22. R isa PID < it has a D-H norm.

Theorem 2.23. Let R be an UFD, g = gcd(a,b), l = lcm(a,b), | = “?b. If g = sa+ tb (guaranteed
in a PID) then
R/<a>eR/<b>=R/<g>@®R/<I>

In particular, ifg=1,1=ab, then R/ <a>@®R/<b>=R/<ab>

3 MODULES

3.1 BASIC RESULTS OF MODULES

Definition 3.1. A module M overaring Risaset M withOe M,+: MxM —- M,e:RxM —- M
such that

1. (M, +,0) is an Abelian group.

2. lm=m, albm) = (ab)m.

3. (a+bym=am+bm, a(m+n) =am+ an.
Given a submodule N of M, we have M/N where my my if m; — mo € N.
Theorem 3.2. Modules Isomorphism Theorem 1-4

1. Givengp: M — N, M/ker(p) = im(p).

A+B ~ A
2. A’BCM’TZW

M/A ~
3. AcBcM, MA=yp

4. Given a submodule N of M, there is a bijection between ideals ] where N c ] ¢ M and ideals
of M/N.

Theorem 3.3. Structure theorem for finitely generated modules over a PID If M is a finitely gen-
erated module over a PID R, then

n
MzRe@R/<p)>
i=1

where the p; are prime, s; € Z-y. Furthermore k is unique and the decomposition is unique up to
an permutation of the R/ < p}' >'s.



Corollary 3.4. Jordan Normal Form Over an algebraically closed field, every square matrix is con-
jugate to a matrix with Jordan blocks down the diagonal. Jordan blocks are blocks of the form:

A 0 ... ... ... 0
1 A
0 1 2
- 0
0 0o 1 A

3.2 TENSOR PRODUCTS

Definition 3.5. Given two R-modules M, N, we define the tensor product M ® N to be a module
along with a bilinear map ¢: M x N — M ® N such that the following diagram commute:

M&N—3sM&N

|
la
p +

p

That is, given any map p from M x N to P, there exist a unique map a from M ® N to P such that
p = at.

Theorem 3.6. M ® N exists and is unique up to an isomorphism.

4 LOCALIZATION AND FIELDS OF FRACTIONS

Definition 4.1. R is a domain, S < R\{0} is multiplicative if 1 € S, and s1, s» € S implies s; 53 € S.

ad+bc

<= a ac
d~ bd ’b

= pd’-

Definition 4.2. Define S™1R:= {% :T€R,s€ S} (sor1 =51712,0 = %, 1= %, % +
S 1R is called the localization of R at S.

Qo
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