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This is a summary of the major results we covered over the course. A few proofs
are also included.
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1 GROUPS

1.1 BASIC RESULTS IN GROUPS

Definition 1.1. Let G be a group, g ,h ∈G . Conjugation of g by h (g h) is the element h−1g h.

Definition 1.2. Let G be a group, N <G . N is a normal subgroup of G (N CG) if for every g ∈G ,
N g = {g−1ng : n ∈ N } = N .

Remark 1.3.

• Every N CG is the kernel of some surjective homomorphism ϕ : G → H . (Construct an
equivalence relation on elements of G , g1 g2 if g−1

1 g2 ∈ N , let H = G/ and do the natural
thing.)

• For any K <G , |K | | |G|.
Theorem 1.4. First Isomorphism Theoremφ : G → H is a group homomorphism then G/ker(φ) ∼=
i m(φ).

Proof. Define R : G/ker(φ) → i m(φ) by R([g ]) = φ(g ) and check it is well-defined. Define L :
i m(φ) → G/ker(φ) by L(h) = [g ] and check that it is also well-defined. Show the two maps are
homomorphism and the two compositions are identities.

Remark 1.5. H ,K <G . HK = {hk : h ∈ H ,k ∈ K }. HK <G ⇔ HK = K H .

Definition 1.6. G is a group, X a subset of G .

• Normalizer: NG (X ) = {g ∈G : X g = X }

• Centralizer: CG (X ) = {g ∈G : ∀x ∈ X , g x = xg } = {g ∈G : ∀x ∈ X , xg = x}

• Center: Z (G) =CG (G)

Proposition 1.7. If H < HG (K ) then HK = K H, K CHK , and H
⋂

K CH.

Proof.

• H < NG (K ), so ∀h ∈ H , hK = K h. Then
⋃

h∈H hK = HK and
⋃

h∈H K h = K H . Thus HK =
K H (consequently a group).

• K hk = (K h)k = K k = K

• a ∈ H
⋂

K then ah ∈ H h = H , ah ∈ K h = K . So ah ∈ H
⋂

K .

Theorem 1.8. Second Isomorphism Theorem for Groups G is a group, H ,K < G, H < NG (K ).
Then HK /K ∼= H/H

⋂
K .

Proof. Define R : HK /K → H/H
⋂

K , R([hk]K ) = [h]H
⋂

K . It’s well-defined, consider h1k1 h2k2,
so h1k1k ′ = h2k2. We want [h1]H

⋂
K = [h2]H

⋂
K , equivalently h−1

1 h2 ∈ H
⋂

K . Well h−1
1 h2 ∈ H ,

and h1k1k ′k−1
2 = h2, so h−1

1 h2 = h−1
1 h1k1k ′k−1

2 = k1k ′k−1
2 ∈ K . Define L : H/H

⋂
K → HK /K ,

L([h]H
⋂

K ) = [h]K . It’s well-defined since H
⋂

K ⊆ K . Check that R,L are multiplicative and in-
verses of each other.
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Theorem 1.9. Third Isomorphism Theorem for Groups G is a group, H ,K CG, K < H. Then
G/K
H/K

∼=G/H. In particular H/K CG/K .

Proof. Define R : G/K
H/K →G/H , R([[g ]K ]H/K ) = [g ]H . Define L : G/H → G/K

H/K , L([g ]H ) = [[g ]K ]H/K .
Check they are well-defined, multiplicative, and inverses of each other.

Theorem 1.10. Fourth Isomorphism Theorem for Groups G is a group, N CG. Then π : G →G/H
induces a faithful bijection between subgroups {H : N < H <G} and subgroups of G/N . Faithfully
means N < A < B <G implies π(A) <π(B), ACB implies π(A)Cπ(B), and π(A

⋂
B) =π(A)

⋂
π(B).

Definition 1.11. A nontrivial group G is simple if the only subgroups of G are G and {1}.

Proposition 1.12. Z/n is simple ⇔ n is prime.

Theorem 1.13. Jordan-Hölder Let G be a finite group then there exists a sequence of the following
form:

G =G0 BG1 B · · ·BGn = 1

such that Hi = Gi /Gi+1 is simple, and the sequence of Hi ’s (called the composition series of G) is
unique up to a permutation.

Remark 1.14. You cannot reconstruct G from the Hi ’s.

Definition 1.15. Given,σ ∈ Sn , the sign ofσ is the parity of the number of transpositions required
to write σ as a product of those transpositions.

Corollary 1.16.

• σ and σ′ are conjugates if and only if they have the same list of cycle lengths.

• The number of conjugacy classes in Sn is the number of partitions of n.

Theorem 1.17. An CSn is simple for n = 3 or n ≥ 5.

Definition 1.18. Given a group G , a (left) G-Set is a set X along with a (left) action of G on X i.e.
a map • : G ×X → X such that

1. ∀x ∈ X , 1G •x = x

2. ∀g1, g2 ∈G , ∀x ∈ X , g1 • (g2 •x) = (g1g2)•x

Definition 1.19.

• A G-Set is transitive if ∀x, y ∈ X , there exist g ∈G such that g •x = y .

• StabX (x) = g ∈G : g x = x

• The orbit of x ∈ X is Gx.

Theorem 1.20.

1. Every G-Set is a disjoint union of transitive G-Sets.

2. if X is a transitive G-Set, then X ∼=G/StabX (x) with x ∈ X /.
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Theorem 1.21. If X is a G-Set, and xi are representatives of the orbits of X , then |X | = ∑
i
|Gx1| =∑

i

|G|
|StabX (xi )| . (X , G finite).

Corollary 1.22. In the case where G acts on itself by conjugation, then G equals the union of the
conjugacy classes. Let yi be the representatives of the conjugacy classes of size greater than 1, then
we have the class equation:

|G| = |Z (G)|+∑
i

|G|
|CG (yi )|

Theorem 1.23. If G is a group of order pα, where p is prime then Z (G) is nontrivial.

Proof. Look at the class equation and conclude that |Z (G)| is divisible by p.

1.2 SYLOW THEOREMS

For this subsection, G is finite, p is prime, |G| = pαm where p -m.

Definition 1.24. Sylp (G) = {P <G : |P | = pα}

Lemma 1.25. Cauchy’s Theorem If G is a finite Abelian group of order divisible by p, then G
contains an element of order p.

Theorem 1.26. Sylow theorems 1-3

1. Sylp (G) 6=∅

2. Every p-subgroup (subgroup of G with order of every element being a power of p) of G is
contained in some Sylow-p subgroup of G.

3. All Sylow-p subgroups of G are conjugate. Define np (G) := |Sylp (G)|, then np (G) | |G| and
np (G) = 1 mod p.

Remark 1.27. A group of order p is isomorphic to Z/p.

Remark 1.28. If gcd(a,b) = 1 then Z/a ×Z/b ∼=Z/ab.

1.3 SEMI-DIRECT PRODUCTS

Given N , H <G , we want to compare N ×H with N H . There is always a map µ : N ×H → N H
but in general there is not much to be said about µ.

Definition 1.29. If N , H are arbitrary groups, and φ : H → Aut (N ) is a homomorphism. Denote
the semi-direct product of N and H relative to φ as N oφ H . Where N oφ H = {nh : n ∈ N ,h ∈ H }
with the product (n1h1)(n2h2) = (n1φh1 (n2)n2)(h1h2)

Proposition 1.30.

1. N oH is indeed a subgroup with eNoH = eN eH = e

2. H < N oH

3. N CN oH, N oH/N ∼= H

4. N
⋂

H = e, nh−1 =φh(n)

Theorem 1.31. If G = N H, N CG, H <G, H
⋂

N = e, then G ∼= N oφ H where φh(n) = nh
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2 RINGS

2.1 BASIC RESULTS OF RINGS

Remark 2.1. The evaluation map (evu : R[x] → R), is a ring homomorphism provided R is com-
mutative.

Theorem 2.2. Cayley-Hamilton A matrix annihilates its characteristic polynomial. Let A be a
n ×n matrix over a commutative ring R, let χA be the characteristic polynomial of A (χA(t ) =
det(t I − A)), then χA(A) = 0.

Definition 2.3. An ideal I of a ring R is proper if I 6= R ⇔ 1 ∉ I .

Remark 2.4. Every proper ideal is the kernel of some ring homomorphism.

Theorem 2.5. Ring Isomorphism Theorems 1-4

1. ϕ : R → S a ring homomorphism, then R/ker(ϕ) ∼= i m(ϕ).

2. A is a subring of R, I an proper ideal, then A+I
I = A

A
⋂

I .

3. I ⊂ J ⊂ R are proper ideals, then R/I
J/I

∼= R/J .

4. Given a proper ideal I of R, there is a bijection between ideals J where I ⊂ J ⊂ R and ideals
of R/I .

From now on R is commutative.

Theorem 2.6. I ⊂ R is maximal ⇔ R/I is a field.

Theorem 2.7. Every proper ideal in any ring is contained in a maximal ideal.

Proposition 2.8. R/I is a field ⇔ I is maximal.

Theorem 2.9. A maximal ideal is prime.

2.2 UFDS, PIDS, EUCLIDEAN DOMAINS

From now on R is commutative and a domain.

Definition 2.10. a,b ∈ R are associates (a b) if a | b and b | a.

Proposition 2.11. If q, q ′ are both gcd of a and b, then q q ′

Definition 2.12.

• Given x ∉ R×, x 6= 0, x is irreducible if x = ab ⇒ a ∈ R× or b ∈ R×.

• Given p ∉ R×, x 6= 0, p is prime if p | ab ⇒ p | a or p | b.

Proposition 2.13. p is prime implies p is irreducible.

Theorem 2.14. Given a UFD R, x ∈ R\0 can be written as a product of primes and a unit i.e.
x = up1 . . . pn , and this factorization is unique up to a permutation and units.

Proposition 2.15. In a UFD, x is prime if and only if x is irreducible.

5



Proposition 2.16. R is a UFD if and only if every nonzero x ∈ R has a unqiue decomposition into
irreducibles.

Theorem 2.17. gcd always exists in UFDs.

Theorem 2.18. We have the following chain of implications: R is an Euclidean domain ⇒ R is a
PID ⇒ R is a UFD.

Proposition 2.19. A PID is Noetherian, that is every descending sequence of ideals in R is eventu-
ally constant.

Proposition 2.20. In a PID, < a,b >=< gcd(a,b) >.

Definition 2.21. A Dedekind-Hasse (D-H) norm on R is a function d : R\{0} → N>0 such that if
a,b 6= 0, either b | a or there exist x ∈< a,b > \0 with d(x) < d(a).

Theorem 2.22. R is a PID ⇔ it has a D-H norm.

Theorem 2.23. Let R be an UFD, g = g cd(a,b), l = lcm(a,b), l = ab
g . If g = sa + tb (guaranteed

in a PID) then
R/ < a >⊕R/ < b >∼= R/ < g >⊕R/ < l >

In particular, if g = 1, l = ab, then R/ < a >⊕R/ < b >∼= R/ < ab >

3 MODULES

3.1 BASIC RESULTS OF MODULES

Definition 3.1. A module M over a ring R is a set M with 0 ∈ M , + : M ×M → M , • : R ×M → M
such that

1. (M ,+,0) is an Abelian group.

2. 1m = m, a(bm) = (ab)m.

3. (a +b)m = am +bm, a(m +n) = am +an.

Given a submodule N of M , we have M/N where m1 m2 if m1 −m2 ∈ N .

Theorem 3.2. Modules Isomorphism Theorem 1-4

1. Given ϕ : M → N , M/ker(ϕ) ∼= i m(ϕ).

2. A,B ⊂ M, A+B
B

∼= A
A

⋂
B

3. A ⊂ B ⊂ M, M/A
B/A

∼= M/B

4. Given a submodule N of M, there is a bijection between ideals J where N ⊂ J ⊂ M and ideals
of M/N .

Theorem 3.3. Structure theorem for finitely generated modules over a PID If M is a finitely gen-
erated module over a PID R, then

M ∼= Rk ⊕
n⊕

i=1
R/ < p si

i >

where the pi are prime, si ∈Z>0. Furthermore k is unique and the decomposition is unique up to
an permutation of the R/ < p si

i >’s.
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Corollary 3.4. Jordan Normal Form Over an algebraically closed field, every square matrix is con-
jugate to a matrix with Jordan blocks down the diagonal. Jordan blocks are blocks of the form:

λ 0 . . . . . . . . . 0

1 λ
. . .

...

0 1 λ
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . . . . 0 1 λ


3.2 TENSOR PRODUCTS

Definition 3.5. Given two R-modules M , N , we define the tensor product M ⊗N to be a module
along with a bilinear map ι : M ×N → M ⊗N such that the following diagram commute:

M ⊗N

ρ
%%

ι // M ⊗N

α
��

P

That is, given any map ρ from M ×N to P , there exist a unique map α from M ⊗N to P such that
ρ =αι.
Theorem 3.6. M ⊗N exists and is unique up to an isomorphism.

4 LOCALIZATION AND FIELDS OF FRACTIONS

Definition 4.1. R is a domain, S ⊂ R\{0} is multiplicative if 1 ∈ S, and s1, s2 ∈ S implies s1s2 ∈ S.

Definition 4.2. Define S−1R := { r
s : r ∈ R, s ∈ S}/(s2r1 = s1r 2,0 = 0

1 ,1 = 1
1 , a

b + c
d = ad+bc

bd , a
b

c
d = ac

bd ).
S−1R is called the localization of R at S.
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