
MAT 1100 - ALGEBRA I

CHRISTOPHER EAGLE

Abstract. These are my notes from the MAT 1100 lectures given by Prof.

Bar-Natan in Fall 2010 at the University of Toronto.

1. Groups

1.1. Introduction - The Rubik’s Cube. Notes from September 14 should go
here, but are posted by someone else on the website.

1.2. The Basics. We have seen what groups are, and wish to study them in more
detail. No group exists all alone, however, and it is useful to define structure-
preserving maps between groups.

Definition 1.1. Let G,H be groups. A homomorphism (or just morphism) is
a function φ : G→ H which preserves the group structure of G, in the sense that:

(1) For all g1, g2 ∈ G, φ(g1g2) = φ(g1)φ(g2).
(2) φ(eG) = eH .
(3) For all g ∈ G, φ(g−1) = φ(g)−1.

A isomorphism is a bijective homomorphism. If there is some φ : G → H which
is an isomorphism, we write G ∼= H.

We note that points (2) and (3) in the above definition actually follow from point
(1), and hence need not be checked independently when verifying that a map is a
homomorphism. Indeed, using (1) we have eHφ(eG) = φ(eGeG) = φ(eG)φ(eG), so
by the cancelation law φ(eG) = eH . Also, for any g ∈ G, we have eH = φ(eG) =
φ(gg−1) = φ(g)φ(g−1), and hence φ(g−1) = φ(g)−1 by definition of inverses. We
also note that φ(gn) = φ(g)n.

The universe (Groups, morphisms) forms an example of a “Category”. We will
encounter categories in more detail later. In particular, the definition of a category
will include the following:

(1) Morphisms can be composed, and the result is again a morphism.
(2) Every object (i.e., every group) has a distinguished “identity morphism”.

That is, if we have three groups G,H,K, and morphisms φ : G→ H and ψ : H →
K, then the composition ψ ◦ φ : G → K is a morphism of groups, and there is an
identity map IK : K → K, namely for all k ∈ K, IK(k) = k. The key property of
IK is that it is a morphism, and for any morphism φ : G→ K we have IK ◦ φ = φ.
All of the above are trivial to check.

Example 1.2. (1) If V,W are vector spaces then they are, in particular, groups
under addition. A linear transformation T : V → W is in particular a
group morphism.
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(2) The map exp : (R,+)→ (R+,×) given by x 7→ ex is a group morphism.
(3) If H ≤ G then the inclusion map iH : H → G, given by iH(h) = h for every

h ∈ H, is a group morphism.
(4) Given any group G, and any g ∈ G, define conjugation by g to be the map

(from G to G) given by h 7→ hg = g−1hg. Then:
(a) (h1h2)g = hg1h

g
2, so conjugation is a morphism. As it maps G to itself,

it is an endomorphism.
(b) hg1g2 = (hg1)g2 . It follows that the conjugation map is invertible, and

(hg)g
−1

= h. So conjugation is an automorphism.
(c) (ab)c = (ac)(b

c). Why this is important will become clear later.
(d) If φ is a homomorphism then φ preserves conjugation, in the sense

that φ(hg) = φ(h)φ(g).
(5) Consider S4 as the automorphism group of the tetrahedron (this autmor-

phism group really is S4, since any vertex of the tetrahedron can be mapped
to any other, and then any remaining vertex mapped to any remaining ver-
tex, and so forth). Consider S3 as the symmetric group on the colours
R,G,B. We define a (surjective) morphism φ : S4 → S3 by mapping pairs
of opposite (i.e., non-intersecting) edges the same colour. Since an auto-
morphism of a tetrahedron preserves the adjacency relation among edges,
but might change the colours of the pairs. Thus φ is indeed a morphism.

For example, consider the permutation σ = 2341 ∈ S4. Then φ(2341) is
R 7→ G, G 7→ R, and B 7→ B. [insert picture]

Claim 1.3. If φ : G → H is a morphism then kerφ := φ−1(eH) ≤ G and imφ =
φ(G) ≤ H.

We have seen in the above example that S3 is an image of S4. Note that S3 ≤ S4

is clear. Is S3 also the kernel of some φ : S4 → G for some G? The answer is no.
Suppose that φ : G→ H is a homomorphism. Note that if h ∈ kerφ then for any

g ∈ G we have φ(hg) = φ(h)φ(g) = e
φ(g)
H = eH , so hg ∈ kerφ. This is an example of

the following definition:

Definition 1.4. A subgroup N ≤ G is called normal if for every g ∈ G and every
n ∈ N , ng ∈ N . We denote this by N E G.

Above, we thus proved the following:

Proposition 1.5. If φ : G→ H is a homomorphism, then kerφ / G.

So to answer our question about S3, we should check if S3 / S4. Consider the
permutation 2314 ∈ S3 ≤ S4. If we conjugate by something in S3 we know we will
be back in S3, so we try conjugation by 1243 ∈ S4 \S3. We get [1243]−1[2314][1243]
sends 4 to 1, so the conjugation is not in S3. Thus S3 6E S4, so S3 cannot be the
kernel of any morphism from S4.

As an exercise, compute the kernel of each homomorphism in Example 1.2. In
particular, the kernel in part (5) is non-trivial, having 4 elements.

We now ask about the converse of Proposition 1.5. That is, given N E G, is
there a surjective morphism φ : G → H such that N = kerφ? The answer is yes,
and we will prove it after a set-theoretic aside.

Recall that an equivalence relation on a set X is a binary relation ∼ on X
such that:
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(1) Reflexive: x ∼ x
(2) Symmetric: x ∼ y ⇐⇒ y ∼ x
(3) Transitive: x ∼ y, y ∼ z =⇒ x ∼ z

Given an equivalence relation ∼ on X we get a new set X/ ∼= {[x]∼ : x ∈ X} where
we define [x]∼ = {y ∈ X : y ∼ x}. X is thus decomposed into a disjoint union of
its equivalence classes under ∼. We recall that equivalence relations are closely
related to surjections. Given an equivalence relation ∼, we get a surjective map
π : X → X/ ∼ given by π(x) = [x]∼. Conversely, given a surjective map φ : X → Y ,
we get an equivalence relation onX by defining x1 ∼ x2 ⇐⇒ φ(x1) = φ(x2). These
operations define a “natural equivalence of categories”, which we will not define.

We can now return to our group-theoretic problem. If φ existed, and ∼ was the
corresponding equivalence relation, what properties would ∼ have? Note that:

g1 ∼ g2 ⇐⇒ φ(g1) = φ(g2)

⇐⇒ φ(g−11 g2) = eH

⇐⇒ g−11 g2 ∈ N ⇐⇒ g2 ∈ g1N
We can now use this thought process to resolve our question:

Proposition 1.6. Let G be a group, N E G a normal subgroup. Then there is a
group H and a morphism φ : G→ H such that N = kerφ.

Proof. Define ∼ on X by g1 ∼ g2 ⇐⇒ g−11 g2 ∈ N( ⇐⇒ g2 ∈ g1N). We claim
that ∼ is an equivalence relation. The proofs that ∼ is reflexive and symmetric are
easy, and omitted. Suppose that g1 ∼ g2 ∼ g3. Then g2 = g1n1 for some n1 ∈ N
and g3 = g2n2 for some n2 ∈ N . Then g3 = g2n2 = g1n1n2 ∈ g1N since N ≤ G.
So g1 ∼ g3, and ∼ is an equivalence relation.

We now have the set G/ ∼ and a surjective map φ : G → G/ ∼ given by
g 7→ [g]∼. We write G/N instead of G/ ∼, and [g]N (or just [g]) instead of [g]∼. If
we can show that G/N is a group and φ is a morphism then we’ll be done.

We have [g1][g2] = φ(g1)φ(g2) by definition. As we want φ to be a morphism, we
must define [g1][g2] = [g1g2], but we need to see that this is well-defined. Suppose
g1 ∼ g′1 and g2 ∼ g′2. Then we must show that g′1g

′
2 ∼ g1g2. Write g′1 = g1n1, g

′
2 =

g2n2. Then g′1g
′
2 = g1n1g2n2 = g1g2g

−1
2 n1g2n2 = g1g2n

g2
1 n2 ∈ g1g2N since N E G,

so we got g′1g
′
2 ∼ g1g2.

We next need to check that this multiplication makes G/N into a group, but
this is trivial. Similarly, we also need to check that φ is a homomorphism, but
we constructed it to be such, so this proof is also trivial. Also, that N = kerφ is
immediate from the definition of φ. �

We will frequently use the notion of G/N defined in the above proof. Along the
way to the previous result, we also essentially proved the following theorem:

Theorem 1.7 (First Isomorphism Theorem). Let G,H be groups, φ : G → H a
homomorphism. Then G/ kerφ ∼= imφ.

Proof. Define ψ : G/ kerφ → imφ by ψ([g]kerφ) = φ(g). It is a straightforward
exercise to verify that:

(1) ψ is well-defined.
(2) ψ is a morphism.
(3) ψ is bijective.
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�

Even when H ≤ G but H 6E G we still have the following facts:

Lemma 1.8. There is a bijection [g1]→ [g2] for any g1, g2 ∈ G.

Proof. We leave it as an exercise to check that g′1 7→ g2g
−1
1 g′1 for any g′1 ∈ [g1] is

such a bijection. �

Corollary 1.9. All equivalence classes mod H have the same size, namely |H|.

Proof. This is immediate from the above and the fact that H = [1G]. �

The above results show that |G| = k |H| for some k. If G is finite, then |H| | |G|.
We write [G : H] = |G/H| = |G| / |H|, and call this number the index of H in G.
Note that sometimes we write g or gH for [g] ∈ G/H when H ≤ G.

Read along: Selick’s notes 1.1, 1.2.1, 1.4. Lang’s book I1− 3.
Our goal is to reach the Jordan-Hölder Theorem, which asserts that every finite

group G can be written (essentially uniquely) as a tower of normal extensions
G = G0 . G1 . G2 . . . . . Gn = {1}, and this can be done in such a way that
the sequence cannot be refined further. That is, for each i, Gi/Gi+1 is simple
- it has no non-trivial normal subgroups. We think of simplicity as a kind of
primeness condition for groups, so the Jordan-Hölder theorem is a kind of prime
decomposition for finite groups. Before we can get to this result, we will need
several more isomorphism theorems.

Definition 1.10. Suppose that K ≤ G. The normalizer of K in G is NG(K) ={
g ∈ G : g−1Kg = K

}
.

Proposition 1.11. Let K ≤ G be groups. Then

(1) NG(K) is a group.
(2) K E NG(K).
(3) NG(K) = G ⇐⇒ K E G.

Proof. All are easy exercises. �

Theorem 1.12 (Second Isomorphism Theorem). Suppose that H,K ≤ G and
H ≤ NG(K). Then H ∩K E H, K E H ·K (in particular, H ·K is a group), and
H/(H ∩K) ∼= (H ·K)/K.

(see picture)

Proof. We list the things that need checking, and observe that they are all easy.

• H ∩K is a group.
• H ∩K E H.

– Take h ∈ H. Then for any k ∈ H ∩K, h−1kh ∈ H since H is a group,
and h−1kh ∈ K since H ≤ NG(K). So h−1kh ∈ H ∩K.

• H ·K is a group.
– Take h1k1, h2k2 ∈ H·K. Then h1k1h2k2 = h1h2h

−1
2 k1h2k2 = h1h2(k1)h2k2 ∈

H ·K since H ≤ NG(K). Inverses are similar.
• K E H ·K.

– Take k1 ∈ K, hk2 ∈ H ·K. Then khk21 = (kh1 )k2 ∈ K since kh1 ∈ K, as
H ≤ NG(K).

Define φ : H/(H ∩K)→ (H ·K)/K by φ([h]H∩K) = [h]K .
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• φ is well-defined.
– Consider ht with t ∈ H∩K. Then φ([ht]) = [ht]K = [h]K = φ([h]H∩K)

since t ∈ K.
• φ is a group morphism.

Define ψ : (H ·K)/K → H/(H ∩K) by ψ([hk]K) = [h]H∩K .

• ψ is well-defined.
• ψ is a group morphism.
• ψ and φ are inverses of each other.

�

Theorem 1.13 (Third Isomorphism Theorem). Suppose H E G, N E G, and
N ≤ H (so N E H as well). Then H/N E G/N , and (G/N)/(H/N) ∼= G/H.

Proof. It is easy to check that H/N E G/N . Define φ : (G/N)/(H/N) → G/H
by φ([[g]N ]H/N ) = [g]H . We first show that φ is well-defined. Observe that
[[gn]N ]H/N 7→ [gn]H = [g]H since N ≤ H. We also must check well-definedness
at the level of H/N , but this is similarly not difficult. Also easy to see is that φ is
a group morphism.

Define ψ : G/H → (G/N)/(H/N) by ψ([g]H) = [[g]N ]H/N . Again, one easily
checks that this is well-defined, a group morphism, and the inverse to φ. �

The next theorem says that given N E G, then the subgroup lattice of G over
N is the same as the subgroup lattice of G/N over {1}.

Theorem 1.14 (Fourth Isomorphism Theorem). If N E G then there is a bijec-
tion between subgroups of G that contain N and subgroups of G/N . This bijection
preserves the notions of subgroup, indices, and intersections.

Proof. Given N ≤ H ≤ G, since N E G we have N E H. The bijection is
H 7→ N/H. The details are omitted. �

Lemma 1.15 (Butterfly Lemma). It {e} < a / A < G and {e} < b / B < G, then
a(A ∩ B)/a(A ∩ b) ∼= (A ∩ B)b/(a ∩ B)b. See also the picture. Informally, “B/b”,
viewed in the “a−A scale”, is isomorphic to “A/a” viewed in the “b−B scale”.

Our goal will be to prove the Jordan-Hölder Theorem, which is a sort of “prime
decomposition” for groups. We will do this first, then return to prove the Butterfly
Lemma. We will first need some definitions:

Definition 1.16. A group G is called simple if it has no non-trivial normal sub-
groups. That is, the only N E G are N = {e} and N = G.

Definition 1.17. A normal tower for a group G is a sequence G = An . An−1 .
. . . . A1 . A0 = {e}. Such a tower is called a composition series if Ak/Ak−1 is
simple for all k. We often write (A) for the sequence above.

Proposition 1.18. Let G be a finite group. Then G has a composition series.

Proof. Start with the tower G . {e}. If G is simple we’re done, otherwise find a
normal subgroup in between, insert it, and start again. Continue iterating. Since G
is finite, the process must terminate, and hence produces a composition series. �

Definition 1.19. Two normal towers for G, say (B)m0 and (A)n0 are called equiv-
alent if n = m and there is σ ∈ Sn such that Ak/Ak−1 ∼= Bσ(k)/Bσ(k)−1.
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In general, a group will have many inequivalent normal towers. For composition
series, however, this does not happen, as we shall see shortly.

Definition 1.20. A tower (C) is a refinement of a tower (A) if (A) comes from
(C) by dropping some of the entries in the tower.

Theorem 1.21 (Jordan-Hölder). If G = An . An−1 . . . . . A1 . A0 = {e} is a
composition series for G, and G = Bm . Bm−1 . . . . . B1 . B0 = {e} is another
composition series for G, then the two series are equivalent.

Once we have this theorem the study of groups (at least, finite groups) will be
reduced to the study of simple groups and normal extensions. Before we can prove
Jordan-Hölder, we will need a preliminary result.

Proposition 1.22. Any two normal towers (A) and (B) for G have equivalent
refinements.

Proof of Theorem 1.21 from Proposition 1.22. Any refinement of a composition se-
ries is the series itself, by definition of composition series. By Proposition 1.22 the
composition series (A) and (B) have equivalent refinements, which must be them-
selves, so (A) and (B) must be already equivalent. �

Proof of Proposition 1.22 from Lemma 1.15. Suppose G = A3 .A2 .A1 .A0 = {e},
and G = B2 . B1 . {e}. We will use Lemma 1.15 to put A1,1, which will be the
image of B1 under the compression, between A0 and A1. Then we will do this again
to get A2,1 between A1 and A2, and again to put A3,1 between A2 and A3. This
gives a refinement of (A), call it (A′). Now we do the reverse, putting B1,1 and
B1,2 (images of A1 and A2, respectively, under compression) between B0 and B1.
Similarly, put B2,1 and B2,2 between B1 and B2. This gives a refinement (B′) of
(B). Both q(A′) and (B′) have 6 = 2 · 3 = mn entries. The Butterfly Lemma 1.15
then says that the appropriate comparisons are isomorphic (see picture).

Now we give the formal proof. Let Ak,l = Ak−1(Bl ∩ Ak). Likewise, let Bl,k =
(Bl∩Ak)Bl−1. Then the sequence (Ak,l) (orderedAn,m, An,m−1, . . . , An,0, An−1,m, . . .)
refines (Ak) and (Bl,k) (ordered likewise) refines (Bl). By the Butterfly Lemma
1.15 Ak,l/Ak,l−1 ∼= Bl,k/Bl,k−1, where we understand Ak,l−1 to be Ak−1,m if l = 0,
and Bl,k−1 = Bl−1,n if k = 0. This causes no problems, since we always have
Ak,0 = Ak−1,m = Ak−1 and Bl,0 = Bl−1,n = Bl−1. �

To complete our proof of the Jordan-Hölder Theorem, we now need only to prove
the Butterfly Lemma

Proof of Lemma 1.15. Recall we have {e} < a / A < G and {e} < b / B < G.

(1) Why is a(A ∩ B) a group? This, and all of the other statements of this
form, follows from the Second Isomorphism Theorem 1.12 and the fact that
A < NG(a), and so A ∩B < NG(a).

(2) a(A ∩ B) . a(A ∩ b). Take α1 ∈ a, α2 ∈ A ∩ B, so α1α2 ∈ a(A ∩ B). Then
(a(A ∩ b))α1α2 = (a(A ∩ b))α2 = a(A ∩ b) since α1 ∈ a(A ∩ b) for the first
step, and a / A, b / B for the second step.

Now a(A∩B)/a(A∩b) = (A∩B)a(A∩b)/a(A∩b) since a(A∩B) = (A∩B)a(A∩b). To
see this, note that if E = (A∩B), D = a(A∩b) then we saw above that E < NG(D),
and hence ED = DE. Thus (A ∩ B)a(A ∩ b) = a(A ∩ b)(A ∩ B) = a(A ∩ B) since
A ∩ b < A ∩B.
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Now letting H = A∩B,K = a(A∩b) then we have a(A∩b)/a(A∩b) = HK/K ∼=
H/(H ∩K) = A ∩B/[(A ∩B) ∩ (a(A ∩B))] by the Second Isomorphism Theorem
1.12.

Then we will show A ∩ B/[(A ∩ B) ∩ (a(A ∩ b))] = A ∩ B/a(A ∩ b) ∩ (a ∩ B)b.
The latter is symmetric, so we’re done once we show this. So we need to show
(A∩B)∩ (a(A∩ b)) = a(A∩ b)∩ (a∩B)b. To see it, we show both inclusions. Pick
x ∈ (A∩B)∩(a(A∩b)). Then x ∈ a(A∩b). Write x = αβ where α ∈ a and β ∈ A∩b.
Then also αβ ∈ A ∩ B. As β ∈ b < B, and αβ ∈ B, it follows that α ∈ B. Then
α ∈ a∩B, so indeed αβ ∈ (a∩B)b. Thus (A∩B)∩ (a(A∩ b)) ⊆ a(A∩ b)∩ (a∩B)b.
Now take x ∈ a(A ∩ b) ∩ (a ∩B)b. Then x ∈ a(A ∩ b). Also, x ∈ a(A ∩ b) ⊆ A, and
x ∈ (a ∩B)b ⊆ B, so we’re done. �

Exercise 1.23. Vector spaces are, in particular, additive groups. Use the same
tricks as in the proof of Jordan-Hölder Theorem (including Butterfly Lemma) to
show that any two bases of a finite-dimensional vector space V are equivalent, in
the sense that they have the same cardinality.

The Jordan-Hölder Theorem told us that finite groups can be understood in
terms of simple groups. We will now produce some examples of simple groups.

Definition 1.24. A group G is called cyclic if there is some g ∈ G such that
G =

{
gk : k ∈ Z

}
.

Suppose G = 〈g〉 is cyclic. If gn 6= e for all n ∈ Z then gk 6= gl for all k 6= l, and
the map gk 7→ k witnesses (G, ·) ∼= (Z,+). Otherwise, let n ∈ Z+ be the smallest
positive integer such that gn = e. Then g0 = e, g, g2, . . . , gn−1 are all distinct,
and G =

{
e, g, g2, . . . , gn−1

}
. The map gk 7→ k is then an isomorphism witnessing

(G, ·) ∼= (Z/nZ,+).

Claim 1.25. A cyclic group G is simple if and only if G ∼= Z/pZ for some prime p.

Proof. If G is infinite then G ∼= Z, and as Z is abelian, 2Z is a non-trivial normal
subgroup. So it suffices to show that Z/nZ is simple if and only if n is prime.

Suppose that n = p is prime. Then |Z/pZ| = p. If N < Z/pZ then we have
|N | | p, so Z/pZ has no non-trivial subgroups at all, and hence no non-trivial normal
subgroups, so it is simple.

On the other hand, suppose n is not prime. Let p be a prime divisor of n.
Consider 0, p, 2p, 3p, . . . , np p = n = 0 in Z/nZ. This set is all distinct, and is

clearly a non-trivial subgroup. As Z/nZ is abelian it is also normal, so Z/nZ is not
simple. �

We will see some more examples of simple groups after a discussion of some
properties of symmetric groups.

1.3. Symmetric Groups. There is a group homomorphism sgn : Sn → {±1},
where we view {±1} as a group under multiplication. The map is σ 7→ sgn(σ) =:
(−1)σ =: (−)σ. The informal definition is as follows: A permutation in Sn is a
way of reordering n numbers. If we represent σ by drawing 1, 2, 3, . . . , n above
1, 2, 3, . . . , n and then draw arrows from i on the top to σ(i) on the bottom (in as
generic a way as possible, so there at most two curves cross at any point, and no
curves meet tangently), then sgn(σ) is (−1)number of crossings. We claim that this is
well-defined. To see this, one thinks topologically (insert picture). Also, we should
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note that this is a group morphism. To see this, one draws two pictures, then
makes the composition by attaching i from the bottom row of the first picture to
i of the top row of the second picture. The resulting picture is the picture for the
composition, so one gets the total number of crossings by adding the numbers from
the two pictures. (Insert picture). Now we work more formally:

Definition 1.26. (−1)σ :=
∏
i<j sgn(σ(j) − σ(i)), where sgn(σ(i)) is the sign of

σ(i) as a natural number.

Note that the above definition is clearly well-defined.

Claim 1.27. (−1)στ = (−1)σ(−1)τ

Proof.

(−1)στ =
∏
i<j

sgn(στ(j)− στ(j))

=
∏
i<j

sgn(τ(j)− τ(i)) ·

∏
i<j

sgn(στ(j)− στ(i))

sgn(τ(j)− τ(i))


= (−1)τ

∏
k 6=l,each pair taken once, k = τ(i), l = τ(j)

sgn(σ(l)− σ(k))

sgn(l − k)

= (−1)τ
∏
k<l

sgn(σ(l)− σ(k))

sgn(l − k)

= (−1)τ (−1)σ

= (−1)σ(−1)τ

�

Definition 1.28. A permutation σ such that sgn(σ) = 1 is called even. When
sgn(σ) = −1 we call σ odd.

Definition 1.29. The alternating group is An = ker sgn, which is the collection
of all even permutations.

Definition 1.30. A transposition is a permutation σ such that σ interchanges
two consecutive values, and leaves all others fixed.

Claim 1.31. Every σ ∈ Sn can be written as a product of transpositions.

Proof. Easy. �

Corollary 1.32. An is those permutations which can be written as an even number
of transpositions.

Proof. Easy, since any transposition is odd. �

Definition 1.33. A 2-cycle is a permutation which interchanges two values, and
leaves all others fixed. If σ switches k and l, we write σ = (kl).

Claim 1.34. (−1)(kl) = −1.

Proof. Easy. �
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Corollary 1.35. An is the collection of all permutations that are a product of an
even number of 2-cycles.

Proof. Immediate from the claim. �

Note that we can see immediately that |An| = 1
2 |Sn| =

n!
2 .

We will eventually show:

Theorem 1.36. An is simple for all n 6= 1, 2, 4.

We note immediately that for n = 1, 2 we have |An| = 1, so An is not simple.
For n = 3, we have |A3| = 4!

2 = 3, and the only group of three elements is Z/3Z,
which we have seen before is simple. So only the case n ≥ 4 remains. Before we can
handle this more difficult case, we discuss cycle decompositions for permutations.

Consider the permutation [2, 1, 4, 5, 3]. We can write this alternatively in cycle
notation as (12)(345). We write 1, then σ(1), then σ(σ(1)), and so on until we reach
1 again. Then we close the parentheses, and start another one with the least element
not yet written. For another example, (14)(532) represents the same permutation as
[4, 5, 2, 1, 3]. We call each parenthesized expression a cycle, and call it an n-cycle
if it has n entries. Note that disjoint cycles permute, so (12)(345) = (345)(12).
Also, we may cyclically permute elements within a cycle, so (345) = (534). Note
that an n-cycle is even if and only if n is odd.

Claim 1.37. Every permutation can be written as a product of disjoint cycles. This
decomposition is unique up to the ordering of the cycles and cyclic permutations
within the cycles.

Claim 1.38. (−1)σ = (−1)number of even-length cycles in its decomposition.

Claim 1.39. Suppose σ = (a1 . . . ak) (the following will be true also if σ is written
as a product of disjoint cycles, but we do not do so for convenience). Suppose
τ = [τ(1)τ(2) . . . τ(n)]. Then στ = τ−1στ = (τ−1(a1)τ−1(a2) . . . τ−1(ak)).

Proof. Let L = στ , and R = (τ−1(a1) . . . τ−1(ak)). Then R(τ−1(a1)) = τ−1(a2).
And L(τ−1(a1)) = τ−1(a2) as well. All other τ−1(ai)’s are equally clear. Also, it
is clear that if j 6= τ−1(ai) for any i, then L(j) = R(j) = j. �

Definition 1.40. We say that g1, g2 ∈ G are conjugate if there is g ∈ G such
that gg1 = g2.

Claim 1.41. Conjugacy is an equivalence relation on G.

Proof. Suppose gg2 = g1 and gg
′

3 = g2. Then gg
′g

3 = g1. This verifies transitivity.
The other properties are even easier. �

By the above, G is subdivided into equivalence classes, which we call conjugacy
classes.

Example 1.42. Take G = Sn. Then σ1, σ2 ∈ Sn are conjugate if and only if they
have the same list of cycles lengths. For example, (453)(12) ∈ S5 is conjugate to
any permutation whose disjoint cycle decomposition has a 3-cycle and a 2-cycle.

To see this, use Claim 1.39.

Corollary 1.43. The number of conjugacy classes of Sn is equal to the number of
ways to write n as a sum of positive integers, without regard to order. This latter
number is called Pn, the number of partitions of n.
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Example 1.44. We consider S3. We can write 3 = 3 = 2 + 1 = 1 + 1 + 1, and
there are no other ways of partitioning 3, so there are 3 conjugacy classes in S3.
One conjugacy class is {(123), (132)}. Another consists of all 2-cycles, which is
{(12), (23), (31)}. Finally, another conjugacy class has only 1-cycles, so is {I}.
Counting reveals that these are all the elements of S3. Also, the above descriptions
of An let us see immediately that A3 = {I, (123), (132)}.

We are almost ready to prove Theorem 1.36. Before doing so, we consider the
case n = 4. Recall Example 1.2(4), which gave a map φ : S4 → S3. We consider
kerφ. By inspection, we see that kerφ = {I, (12)(34), (13)(24), (14)(23)} E A4.
Also note kerφ ∼= Z/2Z × Z/2Z. So we see that A4 is not simple. Note that
this group also gives a counterexample to the claim that normality of subgroups is
transitive. We have N = {I, (12)(34)} E kerφ E S4, but N 6E S4. Now let us work
toward showing that An is simple for n > 4.

Lemma 1.45. Every element of An is a product of (not necessarily disjoint) cycles
of length 3.

Proof. If σ ∈ An then we can write σ as a product of an even number of (not
necessarily disjoint) 2-cycles. So it suffices to show that a product of two 2-cycles
is always equal to a product of 3-cycles. There are two cases to consider, namely
when the two 2-cycles are disjoint and when they are not.

In the not disjoint case we have, for example, (23)(12) = (132), and there is
clearly nothing special about the roles of 1, 2, 3 in this example. In the case when
they are disjoint, [see picture]. �

Lemma 1.46. If N E An contains a 3-cycle, then N = An.

Proof. It suffices to show that N contains every 3-cycle, then apply Lemma 1.45.
By relabelling if necessary, assume (123) ∈ N . Given another 3-cycle (ijk), we know
that (ijk) = (123)σ for some σ ∈ Sn. If σ ∈ An, then we’re done, since N E An.
Otherwise, write σ = (12)σ′, so σ′ = (12)σ. Now we have σ 6∈ An, so σ was odd.

Thus σ′ is even, so σ′ ∈ An. Now we have (123)(12)σ
′

= (132)σ
′

= ((123)2)
σ′

. Now

(123) ∈ N , so (123)2 ∈ An, so we get (ijk) = (123)(12)σ
′ ∈ N as before. �

We are now ready to show that An is simple for n > 4.

Proof of Theorem 1.36. Suppose that n > 4, and {e} 6= N E An. By Lemma 1.46
we are done if we can show that N contains a 3-cycle.

First, suppose there is some σ ∈ N whose cycle decomposition contains a cycle
of length ≥ 4. For concreteness, suppose σ = (12345)m where m is the rest of
the cycle decomposition (so consists of products of more disjoint cycles). Consider
σ(123) (any cycle of length 3 will do in place of (123)). We get

σ−1σ(123) = σ−1(132)σ(123)

= m−1(12345)−1(132)(12345)m(123)

= (235)

Now σ−1 ∈ N and σ(123) ∈ N , so we got (235) ∈ N , and we’re done in this case.
We now see that we’re done if there is a cycle of length ≥ 4. So suppose that

every cycle has length at most 3.
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Suppose there is some σ ∈ N such that σ = (123)(456)m (again, m is just
the rest of the cycle decomposition). We consider σ−1σ(124) (any 3-cycle involving
something from each of (123) and (124) will do). Again we get that this is in N ,
and we have

σ−1σ(124) = σ−1(142)σ(124)

= (12435 . . .)

So we found a cycle of length ≥ 4 in N , so by the first case above we get N = An.
For the next case, suppose that N has an element of the form σ = (123)m where

m has no length ≥ 3 cycles, so m is a product of disjoint 2-cycles. Then m2 = I,
so σ2 = (132) ∈ N . So N contains a 3-cycle, so by Lemma 1.46 we get N = An.

We are now reduced to the case where N consists only of elements which are
products of disjoint 2-cycles. We have some σ = (12)(34)m ∈ N where, as before,
m is the rest of the cycle decomposition of σ. We have σ−1σ(123) ∈ N (again, any
3-cycle meeting two distinct 2-cycles in σ will do), and we compute:

σ−1σ(123) = σ(123)−1σ(123)

= (14)(23)

So σ′ = (14)(23) ∈ N . Since n > 4 we can now bring in the element 5, and get
σ′−1σ′(125) ∈ N .

σ′−1σ′(125) = σ′−1(152)σ′(125)

= (12345)

So we again found a cycle of length ≥ 4, so by the first case we again get N = An.
As we have exhausted all the cases, we’re done. �

1.4. Groups Acting on Sets.

Definition 1.47. Let G be a group, X a set. We define G acting on X (or a
G action on X, or X is a G-set) to by a homomorphism φ : G → S(X), where
S(X) is the group of bijections on X. This gives rise to an action, which is a
binary operation ∗ : G×X → X given by g ∗ x = φ(g)(x).

Alternatively, we can begin with a binary operation ∗ : G ×X → X satisfying
(g1g2) ∗ x = g1 ∗ (g2 ∗ x) and e ∗ x = x. Such a ∗ gives rise to a φ : G → S(X),
namely φ(g)(x) = g ∗ x.

Example 1.48. (1) G acts on itself by multiplication. Here X = G, and g1∗g =
g1g.

(2) G acts on itself by conjugation. Here again X = G, and g1 ∗ g = gg
−1
1 =

g1gg
−1
1 .

To see that this is an action, we check e ∗ x = xe
−1

= x, and

(g1g2) ∗ x = x(g1g2)
−1

= xg
−1
2 g−1

1

= (xg
−1
2 )

g−1
1

= g1 ∗ (g2 ∗ x)
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(3) This example refers to the Symmetry Gallery on Prof. Bar-Natan’s website.
Each row represents an action of some Gi(i = 1, . . . , 17) on R2.

For example, any tiling of the plane has symmetries that come from
moving the grid up n units or left n units, for any n ∈ Z. Thus Z2 acts on
a plane tiling. This is the last row of the symmetry gallery.

Consider the bricklaying pattern. If G is the group of symmetries of this
picture, then G ) Z2, and G acts on R2.

It is true, but we will not show it, that (up to some conditions) there
are exactly 17 tiling patters (i.e., group actions on R2, and they are exactly
the ones in the Symmetry Gallery.

(4) If H ≤ G, then G/H may not be a group, but it is a set. Let X = G/H.
Here G acts by g′∗[g] = g′∗gH = (g′g)H = [g′g]. This action is transitive,
meaning that for any x, y ∈ X, there is some g ∈ G such that g ∗ x = y.

(5) If X1, X2 are G-sets, then their disjoint union X1 tX2 is also a G-set in a
natural way, using the action of G on X1 for elements in X1, and the action
of G on X2 for elements of X2. In this case, the action cannot be transitive
unless X1 = ∅ or X2 = ∅.

Fact 1.49. Fix a group G. Then the collection of G-sets forms a category. The
objects are G-sets. For the morphisms, given X1, X2 both G-sets, a morphism
of G-sets is a map f : X1 → X2 such that for every g ∈ G and every x1 ∈ X1,
g ∗ f(x1) = f(g ∗ x1). That is, for any g ∈ G, the following diagram commutes:
An isomorphism of G-sets is an invertible morphism of G-sets.

As an aside, in topology one has the following theorem, which says that G-sets
can be useful in understanding topological spaces:

Theorem 1.50. Given a well-behaved “base space” B, the collection of all coverings
of B is a category, and this category is naturally equivalent to the category of G-sets,
where G = Π1(B), the fundamental group of B.

Now back to the algebra:

Theorem 1.51. Fix a group G.

(1) Every G-set is a (possibly infinite) disjoint union of transitive G-sets.
(2) Every transitive G-set is isomorphic to a G-set of the form G/H for some

H ≤ G.

Proof. (1) Given x ∈ X, the orbit of x is orbG(x) = {g ∗ x : g ∈ G}. Define
a relation ∼ on X by x1 ∼ x2 ⇐⇒ ∃g ∈ G, x2 = g ∗ x1. Then the orbit
of x is the the equivalence class of x under ∼. Then it is clear that X is a
disjoint union of orbits, and every orbit, considered in itself, is a transitive
G-set.

(2)
�

Theorem 1.52. if G is a p-group then Z(G) is non-trivial.

Proof. Let G act on itself by conjugation. Let the xi’s be representatives from the
non-trivial conjugacy classes (i.e., orbits) of G. Then we have, since x ∈ Z(G) if

http://www.math.toronto.edu/~drorbn/Gallery/Symmetry/index.html
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and only if x is an orbit of size 1,

|G| = |Z(G)|+
∑
i

|O(xi)|

= |Z(G)|+
∑
i

[G : StabG(xi)]

= |Z(G)|+
∑
i

[G : CG(xi)]

Here CG(xi) = {y ∈ G : xiy = yxi} ≤ G is the centralizer of xi in G. This equation,
which is called the class equation, implies the theorem. Indeed, |G| and

∑
i[G :

CG(xi)] are divisible by p. Thus |Z(G)| is divisible by p, and in particular is not
1. �

Definition 1.53. Given a finite group G, a Sylow p-subgroup is a subgroup
P ≤ G such that |P | = pα for some α, and such that pα | |G|, and pα+1 6| |G|. That
is, P is a maximal p-subgroup of G. We let Sylp(G) be the set of Sylow p-subgroups
of G.

Theorem 1.54 (Sylow Theorems). Given a finite group G,

(1)
∣∣Sylp(G)

∣∣ ≡ 1 mod p.
(2) Every p-subgroup of G is contained in a Sylow p-subgroup.
(3) All Sylow p-subgroups of G are conjugate.

Corollary 1.55.
∣∣Sylp(G)

∣∣ | |G|.
Proof. By the theorem all such groups are conjugate. Letting G act by conjugation
on Sylp(G), we see that this action is transitive, and the result follows. �

We will prove this later, but for now we give a few examples of its application.

Example 1.56. We find all groups of order 15.
We know that |Syl5(G)| ≡ 1 mod 5. On the other hand, |Syl5(G)| | |G| = 15.

Thus |Syl5(G)| = 1. Let P5 ≤ G by the Sylow 5-subgroup of G. Observe:

Corollary 1.57. If P is the unique Sylow p-subgroup of G, then P E G.

Proof. All conjugates of P are Sylow p-subgroups, and hence are P . Thus P is
closed under conjugation, so is normal. �

So we have P5 E G. On the other hand, we also get that there is a unique Sylow
3-subgroup, call it P3 E G.

Notice also, more generally, that if |G| = pq for distinct primes p < q, then G
has a unique Sylow q-subgroup. If also p - q − 1 then we also get a unique Sylow
p-subgroup. Everything we are doing in this example works equally well in this
context.

Here is an aside, which we could have proved much earlier:

Proposition 1.58. If H is a group such that |H| = p for some prime p, then H ∼=
Z/pZ.

Proof. Pick some x ∈ H such that x 6= e. Consider 〈x〉 ≤ H. Since x 6= H we have
〈x〉 6= {e}. Also |〈x〉| | |H|, so as H is of prime order 〈x〉 = H. The isomorphism
we need is a map φ : Z/pZ → H given by φ(a) = xa. It is easy to check that this
is an isomorphism. �
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In our case, we have P5
∼= Z/5Z and P3

∼= Z/3Z. Consider any y ∈ P3. We claim
that y commutes with all elements of P5. To see this, note that if x ∈ P5, then
since P5 is normal we have xy ∈ P5. Thus the map x 7→ xy is an automorphism of
P5. Now we apply the next result:

Proposition 1.59. Aut(Z/pZ) ∼= (Z/pZ)∗ for any prime p.

Proof. Let φ be an automorphism of Z/pZ. Since Z/pZ is cyclic, φ is determined
by its value on 1. Since φ is surjective, one easily checks that we can have φ(1) any
value except 0. We thus get a bijection φ 7→ φ(1), and it is easy to check that this
is an isomorphism of groups. �

We have |(Z/pZ)∗| = p− 1, and we will show later that (Z/pZ)∗ ∼= Z/(p− 1)Z.
Back to our situation, we can apply this result to see that |Aut(P5)| = 4. Thus

the order of the map φ given by φ(x) = xy, has |φ| | 4. But also |φ| | |y| | 3.
This implies that |φ| = 1, so x = xy, so xy = yx. So indeed y commutes with all
elements of P5.

Also, P3 ∩ P5 = {e}. This is because |P3 ∩ P5| | 3 and |P3 ∩ P5| | 5. Consider
P3P5. By the Second Isomorphism Theorem this is a group of order 15. Thus
P3P5 = G.

Proposition 1.60. If G = G1G2 with G1 ∩ G2 = {e} and such that [G1, G2] = {e}
(i.e., all elements of G1 commute with all elements of G2), then G ∼= G1 ×G2.

Proof. Define φ : G → G1 × G2 by φ(g1g2) = (g1, g2). One needs to check that

this is well-defined. If g1g2 = g′1g
′
2 then g1g

′
1
−1

= g′2g
−1
2 . The left side is in G1, the

right in G2, and G1 ∩G2 = {e}, so g1g
′
1
−1

= e, and so g1 = g′1. Similarly, g2 = g′2.
So φ is well-defined. It is then easy to check that φ is an isomorphism. �

Back to our example, we have shown that G ∼= Z/3Z×Z/5Z. We need one more
thing:

Proposition 1.61. Let m,n be relatively prime integers. Then Z/mZ × Z/nZ ∼=
Z/(mn)Z.

Proof. This is a version of the Chinese Remainder Theorem. �

Thus we see, in our example, that G ∼= Z/15Z. So there is exactly one group of
order 15, which is the cyclic group of order 15.

The above example shows, in fact, that the only group of order pq where p < q,
p - q−1 is Z/(pq)Z. On the other hand, if we look at groups of order 21, we get that
P3 might not be normal. Moreover, the argument that elements of P3 commute
with elements of P7 does not apply. If we get that a conjugation automorphism has
order 3 (instead of 1), then [P3, P7] 6= {e}. We thus do not get the direct product.
Instead, we get a semidirect product, which we will see in more detail later.

We now return and prove Theorem 1.54. We will need the following tools:

Proposition 1.62. Every G-set is a union of orbits, each of order dividing |G|.

Proof. We have seen this before. �

Proposition 1.63 (Cauchy’s Theorem). If G is an abelian group with p | |G| with
p a prime, then G has an element of order p.
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Proof. Induction on |G|. Pick any x ∈ G, and consider 〈x〉. If p | |x| then x|x|/p

is an element of order p. Otherwise, p | |G| / |〈x〉| = |G/〈x〉|. By induction there
is some y ∈ G such that [y] has order p in G/〈x〉. Then yp ∈ 〈x〉, so yp = xα for
some α. Write |y| = kp+ r with 0 ≤ r < p. Then e = y|y| = ykpyr = xαkyr. Now
xαk ∈ 〈x〉, so yr ∈ 〈x〉. That is, [y]r = eG/〈x〉. But 0 ≤ r < p = |[y]|, so r = 0. So

|y| = kp, and yk is of order p. �

Proposition 1.64. Fix P ∈ Sylp(G). If x ∈ G is such that |x| = pb (or H < G is
a p-group) and x normalizes P (or H ≤ NG(P )), then x ∈ P (or H ≤ P ).

Proof. It suffices to do the case for the p-group H, since if x is a p-element then
〈x〉 is a p-group.

By the Second Isomorphism Theorem, since H ≤ NG(P ), HP ≤ G, and |HP | =
|H||P |
|H∩P | . By our hypotheses we get that |HP | is a power of p. Moreover, HP ⊇ P ,

and P a Sylow p-group, so |HP | = |P |. Thus |H| = |H ∩ P |, so H ⊆ P . �

Proof of Theorem 1.54. We recall pα | |G| and pα+1 - |G|.

Claim 1.65. Sylp(G) 6= ∅.

Proof. First, note that if p - |G| then there is nothing to do, the Sylow p-group will
be {e}. Now we go by induction on |G|. We use the class equation

|G| = |Z(G)|+
∑
i

|G|
|CG(xi)|

As usual the xi’s are representatives of the non-trivial conjugacy classes of G. We
have p | |G|, so either p | |Z(G)|, or there is some i such that pα | |CG(xi)|.

In the latter case, CG(xi) � G. By induction, CG(xi) has a Sylow p-subgroup
P . So P ≤ G. But pα | |CG(xi)|, so |P | = pα, and P is a Sylow p-subgroup of G.

In the former case, by Proposition 1.63, Z(G) contains some N such that |N | = p,
and N E G since N ≤ Z(G). Then |G/N | = |G| /p. By induction, let H ≤ G/N
be a Sylow p-subgroup of G/N . Then |H| = pα−1. Let P = π−1(H). Then
|P | = |H| p = pα, so P is the p-group we needed. �

Claim 1.66. If P ∈ Sylp(G), letting X be the set of conjugates of P by elements of
G, we have |X| ≡ 1 mod p.

Proof. P acts on X by conjugation. At least one orbit is a singleton, namely
the orbit containing P . We will have the claim if we can show that every other
orbit has size divisible by p. Suppose that P 6= P ′, and P ′ ∈ X. |orbit of P ′| =
|P | / |StabP (P ′)|. We see that this is always a power of p, and must see that it is
never p0 = 1.

To see this, note that |P ′| = |P | = pα since P ′ is a conjugate of P , so |P ′| is
a Sylow p-subgroup of G. If |orbit(P ′)| = 1 then every element of P acts on P ′

trivially, so P ≤ NG(P ′). By Proposition 1.64, it follows that P ⊆ P ′. But they
have the same order, so P = P ′, contradicting our choice of P ′. �

Now we fix a Sylow p-subgroup of G, say P .

Claim 1.67. If H ≤ G is a p-group, then H is contained in a conjugate of P .

Observe that proving this claim suffices to prove the theorem.
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Proof. Let XP be the set of conjugates of P by elements of G. Then H acts on
XP . Note that p - |XP |. Every orbit has size divisible by p (since H is a p-group),
so there must exist some P ′ ∈ XP which is a singleton orbit. This means that
H ≤ NG(P ′). So by Proposition 1.64 H ⊆ P ′. �

�

1.5. Semidirect Products. Fix a group G. We do not require G to be finite.
Suppose that H,N ≤ G. Consider the function µ : H × N → HN given by
(h, n) 7→ hn. Recall that, in general, HN is not a group, so this is not a morphism.
In general, µ is not injective. Indeed, if H ∩ N 6= {e} then µ is not injective.
However,

Claim 1.68. If H ∩N = {e}, then µ is injective.

Proof. Suppose h1n1 = h2n2. Then n1n
−1
2 = h−11 h2 is in H ∩N = {e}, so n1 = n2

and h1 = h2. �

Consider the example where G = S3, H = 〈(1, 2)〉, and N = 〈(2, 3)〉. Then
〈HN〉 = G, so |〈HN〉| = 6, but |HN | = 4, so HN is not a group. From here on we
assume that H ∩N = {e}.

Now suppose that H E G and N E G. Then µ is an isomorphism. Indeed,
µ((h1, n1)(h2, n2)) = µ(h1h2, n1n2) = h1h2n1n2. On the other hand, µ(h1, n1)µ(h2, n2) =
h1n1h2n2. So to see that µ is a morphism we must show that [H,N ] = {e}. To see

this, take any h ∈ H,n ∈ N . Then hnh−1n−1 = nh
−1

n−1 ∈ N since N is normal.

But also hnh−1n−1 = h(h−1)n
−1 ∈ H, since H is normal. Since N ∩H = {e}, we

see that hnh−1n−1 = e, so indeed [H,N ] = {e}.
From the above, we see that the interesting case is when one of the subgroups

is normal, but the other is not. This is the case we will describe in what follows.
So we work in the case N E G,H ≤ G,H ∩N = {e}. From the above we see that
µ : H ×N → HN is a bijection, but not generally an isomorphism. Our goal is to
understand the group structure of HN in terms of the groups structures on H and
N .

Notice that in this case H acts on N by conjugation, h 7→ (n 7→ nh). Let
φh : N → N denote the conjugation by h maps. Then φh ∈ Aut(N), so the map
h 7→ φh is a group morphism from H to Aut(N). We would like to write h1n2 ·h2n2
as something inH times something inN , for we will then have described the product
in HN . We use a familiar trick: h1n1h2n2 = h1h2h

−1
2 n1h2n2 = h1h2n

h2
1 n2. Now

h1h2 ∈ H, and nh2
1 n2 ∈ N . We rewrite this as µ(h1h2, φh2

(n1)n2). So the product
has the first n “twisted” by the second h. This inspires the following definition:

Definition 1.69. Given any two groups H,N , and a morphism φ : H → Aut(N),
we define the semi-direct product of H and N byHnφN = {(h, n) : h ∈ H,n ∈ N},
with multiplication given by (h1, n1)(h2, n2) = (h1h2, φh2

(n1)n2). We usually write
n for nφ when φ is clear from context.

The above definition is incorrect (essentially because conjugation is an antimor-
phism, not a morphism). Here are some ways to fix it:

(1) Could take φ to be an antimorphism. That is, φ(ab) = φ(b)φ(a).
(2) Given any group G, consider the opposite group Gop, which as a set is G,

but has operation ∗ where a ∗ b = ba. It turns out that G ∼= Gop, by the
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isomorphism g 7→ g−1. Then we could have taken φ to be a morphism
φ : Hop → Aut(N), or φ a morphism φ : H → Aut(N)op.

(3) Instead of HN , look at NH. Then we would have obtained n1h1n2h2 =

n1h1n2h
−1
1 h1h2 = n1n

h−1
1

2 h1h2 = n1ψh1
(n2)h1h2. Now ψ : H → Aut(N) is

a genuine morphism.
(4) When we talked about G-sets, we said that we had a map G × X → X,

or equivalently a morphism G → SX such that (g1g2) ∗ x = g1 ∗ (g2 ∗ x).
This should really be called a left G-set. Then a right G-set is a map
X × G → X such that x ∗ (g1g2) = (x ∗ g1) ∗ g2. This is, equivalently,
an antimorphism G → SX . The theory of left G-sets is the same as the
theory of right G-sets, except that everything gets flipped. We could thus
have switched languages in the definition of semidirect product, and taken
a right H-action on N .

Strictly speaking, we should go back through the above and, every time we used
G acting by conjugation, replace it by G acting on the right by conjugation (or on
the left by conjugation by the inverse). But the conclusions remain unchanged.

Theorem 1.70. (1) If H ≤ G,N E G, and H ∩ N = {e}, then H nφ N ,
where φ is conjugation in G, has H n N ∼= HN . The isomorphism is
µ : H nN → HN , µ(h, n) = hn.

(2) In general,
(a) H ≤ H nN , N E H nN .
(b) (H nN)/N ∼= H.

Proof. Part (1) is immediate from the construction. For part (2), we identifyH with
{(h, eN ) : h ∈ H}. It is easy to see that the product in HnN restricted to H agrees
with the product in H. Likewise, identify N with {(eH , n) : n ∈ N}. Again, we see
that the product in H nN restricted to N agrees with the product in N . So H ≤
H nN,N ≤ H nN . To see that N is normal, we first observe that (h, n)(h′, n′) =
(e, e) implies hh′ = e, and φh′(n)n′ = e. So h′ = h−1, and n′ = φh−1(n−1).
Thus (h, n)−1 = (h−1, φh−1(n−1). Now we compute (h1, n1)−1(eH , n)(h1, n1) =
(h−11 , φh−1

1
(n−11 )(eH , n)(h1, n1) = . . . = (eH , φh1

(n)) ∈ N .

For the second part of (2), the isomorphism is (h, n)N 7→ h. �

Example 1.71. (1) {±1} acts on Z/nZ by φ1(k) = k and φ−1(k) = −k. We
can thus form {±1} n Z/nZ =: D2n, the dihedral group of order 2n.
Geometrically, this group is the groups of symmetries (including flips, so
not orientation-preserving) of a regular n-gon in the plane.

(2) Let F be a field. The linear functions with non-zero slope is {f(x) = ax+ b : a, b ∈ F, a 6= 0}.
This is a group under composition. Two subgroups of this group are
F+b = {x+ b : b ∈ F} and F×a = {ax : a ∈ F}. It is easy to check that

{ax+ b : a, b ∈ F} = F+b n F×a , where the action is φa(b) = ab, F× →
Aut(F+).

(3) The above example can be generalized further. Let V be a vector space,
and let GL(V ) be the collection of all invertible linear transformations V →
V , as a group under composition. Consider {Ax+ b : A ∈ GL(V ), b ∈ V }.
This is the group of affine transformations of V . In the same way as above,
{Ax+ b : A ∈ GL(V ), b ∈ V } = GL(V ) n V . This generalizes the above,
because F× = GL(F).
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(4) (a) Recall that SO(3) is the group of rotations in R3. The “symmetry
group of physics before 1905” is SO(3) n R3. It is also called the
“Galilean group”.

(b) Likewise, after Einstein, physics is better described by SO(3, 1) (which
is the “Lorentz group”, we do not give a definition) and R4. That is,
we have the “Poincaré group” SO(3, 1) n R4, the symmetry group of
special relativity.

Example 1.72. In this example we describe the Braid Group Bn.
Consider

(Cn \ {diagonals} = {(z1, . . . , zn) : ∀i 6= j, zi 6= zj})/Sn
= {polynomials of degree n in C[X] with no repeated roots} .

This is a topological group. Let Bn be its fundamental group.
As an alternative definition, start with {paths in Cn}. Such a path appears like

a braid, since the configuration of the points at t = 0 and t = 1 are the same, but
we do not distinguish the points, so they may end at other places. Then Bn is that
set of paths, modulo homotopy. That is, we allow the paths to be moved around,
so long as we never cause an intersection. This is precisely what can be done with
string, for example. In this presentation, the product of two paths is composition:
follow the first path, then the other.

There is a third presentation, which we give now.

Definition 1.73. The free group on a set X is given as follows. We present in the
case X = {a, b, c}, but the definition generalizes to any cardinality of X. The free
group F(X) is the group containing X, also all the things forced by the definition
of a group (inverses, products), but nothing else, and no additional relations. That
is, it is

{
words on X tX−1

}
, with multiplication being concatenation. If |X| = n,

we often write F(n) for F(X).

Theorem 1.74. This makes sense.

The main problem in proving the theorem is that we need to impose aa−1 =
e = a−1a, where e is the empty word. To defeat this difficulty, we instead work
with reduced words, where aa−1 never appear, with the product as concatenation
followed by removal of aa−1 pairs. There is substantial bookkeeping required, but
there is no conceptual difficulty.

The free group is universal, in the sense that if i : X → F(X) is the inclusion
map and f : X → G is a set map of X into some group G, then there is a unique
group morphism φ : F(X) → G such that φ ◦ i = f . Clearly the map must be
φ(abc) = φ(a)φ(b)φ(c). This universal property characterizes F(X).

Definition 1.75. We write 〈a, b, c : a2 = b4, cbc−1 = a〉 (a definition by genera-
tors and relations), to mean the group F({a, b, c})/smallest normal subgroup containing a2b−4, cbc−1a−1.

We claim, but do not prove, that, if σi means that the first i things do not move,
and i crosses over i+ 1, then the rest do not move, then

Bn = 〈σ1, . . . , σn−1 : σiσj = σjσi∀ |i− j| > 1, σiσi+1σi = σi+1σiσi+1∀i〉
The pure braid group is the subgroup of the braid group formed by pure

braids, namely those braids which induce the identity permutation (that is, at
the end of the braid, each strand is taken to the same position as it started at).
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More precisely, comparing the starting and ending position of the strands induces
a homomorphism Bn → Sn, and the kernel is PBn.

There is a map ρ : PBn → PBn−1, given by dropping the last strand. It is true,
but we will not prove it, that ker ρ = F(n− 1). The reason is that the strands sent
to e can be described by a word in F(n−1) describing which strands it crosses over
and under, once the first n− 1 strands are straightened.

There is also an inclusion map PBn−1 → PBn given by adding a straight strand
on the right. Thus PBn−1,F(n − 1) ≤ PBn. Clearly PBn−1 ∩ F(n − 1) = ∅. As
the kernel of a homomorphism, F(n− 1) E PBn. Thus PBn ∼= PBn−1 n F(n− 1).
Continuing by induction, PBn ∼= (PBn−2 n F(n− 2))n F(n− 1), . . .. At the end,
we get PBn ∼= ((F(1)n F(2)) · · · )n F(n− 1).

To understand this, we start by understanding the action of PBn on F(n). Given
β ∈ PBn, and w ∈ F(n), φβ(w) = β−1wβ, where we view w and β as being elements
of PBn+1, as above. See picture.

Here is another application of Sylow’s Theorem:

Claim 1.76. Any group of order 12 is a semidirect product.

Proof. Suppose not, and let G be of order 12 which is not a semi-direct product. G
has a Sylow 3-subgroup P3 and a Sylow 2-subgroup P2. So |P3| = 3, and |P2| = 4.
Hence P2 ∩ P3 = {e}. Also P3

∼= Z/3Z and it is easy to check that we have either
P2
∼= Z/4Z or P2

∼= Z/2Z × Z/2Z. If one of these is normal then we know we get
a semidirect product. So suppose that both are not normal. Then n2(G) | 12, and
n2(G) ≡ 1 mod 2, and n2(G) 6= 1 since P2 is not normal. So we get n2(G) = 3.
Similarly, we get n3(G) | 12, n3(G) ≡ 1 mod 3, and n3(G) 6= 1. So n3(G) = 4.
Since any two distinct subgroups of order 3 intersect trivially, we see that we have
2 ∗ 4 = 8 elements of order 3. Together with the identity, we have 9 elements, so
only 3 are left. These 3 elements must all be in P2. But this counts all the elements
of G, and we no elements left for the conjugates of P2. �

In light of the above, to understand all groups of order 12 it suffices to classify
all relevant morphism. This is easy, and we find that if |G| = 12 then G must be
one of:

(1) Z/12Z
(2) Z/2Z× Z/6Z
(3) A4

(4) D12

(5) Z/3Z o Z/4Z
For example, we can easily see that Aut(Z/2Z×Z/2Z) ∼= S3. So if we are interested
in morphism φ : Z/3Z → Aut(Z/2Z × Z/2Z) then these are the possibilities: We
could have the trivial morphism, in which case we get a direct product G = Z/3Z×
(Z/2Z×Z/2Z) ∼= Z/6Z×Z/2Z. Otherwise, the generator of Z/3Z must map to one
of the cyclic permutations of order 3. In both cases we get A4. The other examples
are similar.

Definition 1.77. A group G is solvable if all of the factors Gi/Gi+1 appearing
in its decomposition series G = G0 . G1 . G2 . · · · . Gn = {e} are abelian.

Note that we proved that the factors are uniquely determined up to permutation,
so the above definition makes sense.
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Example 1.78. A4 is simple, but A5 is not.

Theorem 1.79. (1) If N E G then G is solvable if and only if both N and
G/N are.

(2) If H ≤ G and G is solvable, then H is solvable.

Proof. (1) Take the normal tower G.N . {e}, and refine it to a decomposition
series for G. Then the result is immediate, using the fourth isomorphism
theorem.

(2) If B,A ≤ G and B E A and A/B is abelian, then B ∩ H E A ∩ H, and
A ∩H/B ∩H is also abelian. Assuming this, take a decomposition series
of G, intersect it with H, and we get a decomposition series for H. That
the quotients are abelian then also follows from the claimed statement.

To see the claim, note that it is clear that B ∩ H E A ∩ H. Then
H ∩A/H ∩B → A/B by the map [a]H∩B → [a]B . It is easy to see that this
is a well-defined injective group morphism. So we can identify H∩A/H∩B
with a subgroup of A/B. As A/B is abelian, so is H ∩A/H ∩B.

�

2. Rings

2.1. Basics. For the remainder of the course by “ring” we will mean “commutative
ring”, unless explicitly stated otherwise.

Definition 2.1. A field is a ring F such that every non-zero element has a multi-
plicative inverse. A domain (or integral domain) is a ring with no zero-divisors.
A zero-divisor is x ∈ R such that x 6= 0 and there exists y 6= 0 such that xy = 0.

Many rings are constructed as quotients. We would like to know, given a ring
R, for which ideals I is R/I a field or a domain.

Definition 2.2. Let R be a ring. An ideal I of R is called maximal if whenever
J is an ideal of R and J ⊇ I then either J = I or J = R.

Definition 2.3. Let R be a ring, S ⊆ R. The ideal generated by S is the
smallest ideal in R containing S. It is denoted by 〈S〉. If S = {x} for some x ∈ R
we write 〈x〉 or xR for the ideal generated by S.

Proposition 2.4. Let R be a commutative ring, I ⊆ R an ideal. Then R/I is a
field if and only if I is maximal.

Proof. First, suppose that R/I is a field. Let J be an ideal such that I ( J .
Then there is some x ∈ J \ I. Then [x]I 6= [0]I in R/I, since x 6∈ I. So there is
a multiplicative inverse to [x]I , say y ∈ R is such that [x]I [y]I = [1]I . That is,
[xy]I = [1]I . Thus xy−1 ∈ I ( J . So 1 = xy−a for some a ∈ J . Since x ∈ J, a ∈ J
and J is an ideal, xy − a ∈ J . So 1 ∈ J , so J = R. Thus I is maximal.

For the converse, suppose that I is maximal. Consider any [x]I 6= [0]I in R/I.
Then x 6∈ I. Consider J = 〈I, x〉 = I+ 〈x〉 = I+Rx. Clearly J ) I since x ∈ J \ I.
Since I was maximal, J = R. So there is a ∈ I, y ∈ R such that a+ yx = 1. Thus
in R/I, [y]I [x]I = [1]I , so [x]I is invertible, and R/I is a field. �

Example 2.5. (1) Let p be a prime. Then 〈p〉 = pZ ⊆ Z is a maximal ideal.
Indeed, Z/pZ is a field.
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(2) Consider the ring l∞ = {bounded sequences of real numbers}. S is a ring
under the pointwise operations inherited from R. Its 0 element is (0, 0, . . .),
and its 1 is (1, 1, . . .). Let An = {(ai) ∈ l∞ : an = 0} ⊆ l∞. It is easy
to check that An is an ideal. We have l∞/An ∼= R. To see this, define
πn : l∞ → R by (ai) 7→ an. Then kerπn = An. Also, imπn = R. It is
easy to check that πn is a ring homomorphism. So by the first isomorphism
theorem l∞/An ∼= R. So l∞/An is a field, and hence An is maximal.

Theorem 2.6. Given a ring R, any ideal I is contained in some maximal ideal.

Example 2.7. In l∞, let I1 = {(ai) : ai 6= 0 for only finitely many i} and I2 =
{(ai) : limi→∞ ai = 0}. These are both ideals in l∞, since the sequences in l∞

are bounded. By the above theorem there exist maximal ideals J1 ⊇ I1 and
J2 ⊇ I2. Consider l∞/J1. Since J1 is maximal, this is a field. Moreover, the
map φ : Q → S/J1 given by r 7→ [(r, r, r, . . .)]J1 . If r 6= 0 then φ(r) 6= [0]J1 .
We will not prove it, but it is true, that the map φ extends to an isomorphism
witnessing S/J1 ∼= R. So we have a map L : S → R. It is a ring morphism, so
L((ai)(bi)) = L((ai))L((bi)) and L((ai) + (bi)) = L((ai)) + L((bi)), and if (ai) is a
sequence with only finitely many non-zero entries, then L((ai)) = 0, and from the
construction of φ we see that if (ai) is a constant sequence, say ai = r for all i,
then L((ai)) = r. Note that L has all of the good properties of normal limits, and
generalizes normal limits. This is too good to be true. So where was the mistake?
There is no mistake, but Theorem 2.6 depended on Zorn’s Lemma (equivalent in ZF
to the Axiom of Choice), and so we do not have a “hands-on” way of understanding
L. One could redo the construction with J2 as well, and get a similar generalization
of lim.

Proof of Theorem 2.6. Recall that Zorn’s Lemma asserts that if P is a partially
ordered set in which every chain has an upper bound, then there exists a maximal
element of P .

Consider P = {J ( R : I ⊆ J, J an ideal}. P is partially ordered by inclusion.
It is easy to check that if we have a chain in P then their union is a bound in P .
So by Zorn’s Lemma there is a maximal element of P , which is exactly a maximal
ideal containing I. �

Definition 2.8. Let R be a ring. An ideal P ⊆ R is called a prime ideal if for
all a, b ∈ R, if ab ∈ P then a ∈ P or b ∈ P .

Example 2.9. In Z[x], then ideal 〈x〉 = {f ∈ Z[x] : f(0) = 0} is prime. Indeed, if
fg ∈ 〈x〉, so f(x)g(x) = (fg)(x) = 0, then either f(x) = 0 or g(x) = 0.

Theorem 2.10. Let R be a ring, P ⊆ R an ideal. Then P is a prime ideal if and
only if R/P is a domain.

Proof. Suppose that R/P is a domain. Suppose that ab ∈ P . Then [a][b] = [ab] =
[0] in R/P . Since R/P is a domain then [a] = 0 or [b] = 0. But that means either
a ∈ P or b ∈ P , so P is prime.

Conversely, suppose that P is prime. Suppose that [a][b] = [0] in R/P . Then
[ab] = [0], so ab ∈ P . Since P is prime, a ∈ P or b ∈ P . But this means that either
[a] = [0] or [b] = [0]. �

Theorem 2.11. Let R be a ring, M ⊆ R a maximal ideal. Then M is a prime
ideal.
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Proof. Since M is maximal R/M is a field, hence a domain, so M is prime. �

Definition 2.12. Let R be a ring. An element u ∈ R is called a unit if u is
invertible. That is, if there exists v ∈ R such that uv = 1. The collection R∗ of all
units in R forms a multiplicative group. If a, b ∈ R are such that a = ub for some
unit u, then we say that a and b are associates.

Definition 2.13. Let R be a ring, a, b ∈ R. We say a divides b, and write a | b,
if there exists c ∈ R such that ac = b.

Proposition 2.14. Let R be a domain, a, b ∈ R. If a | b and b | a then a = ub
where u is a unit in R.

Proof. From the hypotheses we can write b = ac and a = bd for some c, d ∈ R.
Thus a = bd = acd. So a(1 − cd)0. If a = 0 then b = 0c = 0, and we’re done. If
a 6= 0 we have cd = 1, so c and d are units. In particular, a = bd and d is a unit. �

Definition 2.15. Let R be a ring. An element p ∈ R such that p 6= 0 and p is not a
unit (i.e., p is not invertible) is called a prime if 〈p〉 is a prime ideal. Equivalently,
p is prime if whenever p | ab then p | a or p | b.

Definition 2.16. Let R be a ring. An element p ∈ R such that p 6= 0 is called
irreducible if whenever p = ab then either a or b is a unit.

Note that the above two definitions generalize the notion of prime numbers (in
Z) in different ways. In particular, in Z the two definitions agree, provided that we
allow for negative prime numbers. In general, the definitions genuinely are different,
as we will see.

Proposition 2.17. Let R be a domain, p a prime element. Then p is irreducible.

Proof. Suppose that p = ab. Then p | ab, so without loss of generality p | a. So
a = pc for some c ∈ R. Then p = pcb. Since p 6= 0 we get cb = 1, so b is a unit.
Thus p is irreducible. �

The converse to the above proposition is false:

Example 2.18. Let R = Z[
√
−5], the smallest subring of C containing Z and

√
−5.

It is easy to check that R =
{
a+ b

√
−5 : a, b ∈ Z

}
. Note that for any a+b

√
−5 ∈ R,

we have
∣∣a+ b

√
−5
∣∣2 = a2 +5b2 ∈ Z. The element 2 ∈ R is irreducible. To see this,

note that |2|2 = 4. Suppose that 2 = cd for some c, d ∈ R. Then 4 = |c|2 |d|2. Both

|c|2 , |d|2 ∈ Z, so ‖c‖2 is 1, 2, or 4. Writing c = a+b
√
−5, we see from |c|2 = a2+5b2

that b = 0. So |c|2 = a2. As a ∈ Z we get |c|2 6= 2. So either |c|2 = 1 (in which

case c = ±1) or |c|2 = 4, in which case 4 = |c|2 |d|2 implies |d|2 = 1, so d = ±1 by
the same argument as above. So 2 is irreducible.

On the other hand, 2 | 6, and 6 = (1 +
√
−5)(1 −

√
−5). But 2 - 1 +

√
−5, 2 -

1−
√
−5, since 1+

√
−5

2 , 1−
√
−5

2 6∈ R. So 2 is not prime in R.

Definition 2.19. Let R be a domain, a, b ∈ R. We say that q is a greatest
common divisor of a, b if q | a, q | b, and if q′ | a and q′ | b then q′ | q.

Note that even in Z greatest common divisors (in the above sense) are not unique.
For example, −2 is a greatest common divisor of 6 and 10. However, we do have
the following:
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Proposition 2.20. Let R be a domain, a, b ∈ R. If q, q′ are both greatest common
divisors of a and b then q and q′ are associates.

Proof. Since q, q′ both divide a, b and are both greatest common divisors we get
q′ | q and q | q′. So q, q′ are associates by Proposition 2.14. �

In light of the above proposition, we write q = gcd(a, b) to mean that q is a
greatest common divisor of a and b. This is well-defined up to associates. To say
more about primes, we need to move to a more restricted class of rings.

Definition 2.21. A domain R is called a unique factorization domain if for
any a ∈ R such that a 6= 0 there exists a unit u and primes pi, . . . , pn such that
a = up1 · · · pn.

Proposition 2.22. Let R be a unique factorization domain. Then factorizations
are unique, in the sense that if a = up1 · · · pn = vq1 · · · qm where the pi’s and qj’s
are primes, and u, v ∈ R∗, then n = m and there is some σ ∈ Sn such that each qi
is an associate of pσ(i).

Proof. Since p1 · · · pn = q1 · · · qm then p1 | q1 · · · qm. So since p1 is prime, there
is some i such that p1 | qi. Permute the q’s if necessary so that i = 1. Since
q1 is prime it is irreducible, so p1 | q1 implies that p1, q1 are associates. Thus
p2 · · · pn = q2 · · · qmu for some unit u. Now repeat. At the end the worst that could
happen is we get 1 = qn+1 · · · qm. But in this case qn+1 is a unit, so not a prime,
contradiction. �

Proposition 2.23. Let R be a unique factorization domain. Then x ∈ R is irre-
ducible if and only if x is prime.

Proof. If x is prime then it is irreducible, by Proposition 2.17. Now suppose that
x is irreducible. Since R is a unique factorization domain we have x = up1 · · · pn
for some u ∈ R∗ and pi primes. We this of this as a product x = (p1)(up2 · · · pn).
Since x is irreducible, one of the factors is a unit. Since p1 is prime it is not a unit.
But if up2 · · · pn is a unit then ? �

Theorem 2.24. Let R be a ring. Then R is a unique factorization domain if and
only if every non-zero element has a unique decomposition into irreducibles.

Proof. It suffices to show that irreducible implies prime in a ring with unique de-
composition into irreducibles. Suppose that x ∈ R is irreducible. Suppose that
x | ab. Write a = a1 · · · an, b = b1 · · · bm with the ai, bj ’s irreducible. So there exists
z such that xz = a1 · · · an · b1 · · · bm. By the uniqueness of decompositions into
irreducibles, x is one of the ai’s or one of the bj ’s. If x = ai then x | a. If x = bi
then x | b. �

Theorem 2.25. Let R be a unique factorization domain, a, b ∈ R then there exists
a gcd for a and b.

Proof. Write a = ups11 · · · psnn , b = vpt11 · · · ptnn . Note that since only finitely many
primes appear in the decomposition of each of a, b, and we allow ti, si = 0, we may

assume it is the same list of primes. A gcd for a, b is p
min{s1,t1}
1 p

min{s2,t2}
2 · · · pmin{sn,tn}

n .
That this is a gcd is easy to check. �
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So far we have not proved that any particular rings are unique factorization
domains. We will show that Z is a unique factorization domain, as is F [x] for any
field F . We will do this by showing that if a ring has a norm then it is a principal
ideal domain, and every principal ideal domain is a unique factorization domain.

Definition 2.26. A Euclidean domain is a domain R, along with a norm, which
is a map e : R \ {0} → N such that e(ab) ≥ e(a) and for every a ∈ R, b ∈ R \ {0}
there exist q, r ∈ R such that a = bq + r and either r = 0 or e(r) < e(b).

Example 2.27. (1) Z is a Euclidean domain. The norm is e(x) = |x|.
(2) F [x], where F is a field, is a Euclidean domain. The norm is e(f) = deg(f).

For example, if a = x3−2x2−5x+12 and b = x2+1, then we use polynomial
long division to obtain a = (x−2)b+(−6x+14), so q = x−2, r = −6x+14.
Notice that e(−6x+14) = 1 < 2 = e(b). Incidentally, a(i) = −6i+14 = r(i).

Definition 2.28. Let R be a ring. An ideal I ⊆ R is called principal if there
exists x ∈ R such that I = 〈x〉. R is called a principal ideal domain if it is a
domain in which every ideal is principal.

We will show later that if R is a principal ideal domain then it is a unique
factorization domain. For the moment, let us show the following:

Theorem 2.29. A Euclidean domain is a principal ideal domain.

Proof. Let R be a Euclidean domain with norm e, I ⊆ R an ideal. Let x ∈ I be a
non-zero element with lowest norm amongst elements of I. Then I = 〈x〉. Indeed,
if a ∈ I, then since R is a Euclidean domain we can write a = qx + r for some
q, r ∈ R with r = 0 or e(r) < e(x). Write r = a− qx. Since a, x ∈ I we get r ∈ I.
By minimality of e(x), we have e(r) 6< e(x). Thus r = 0 so a = qx ∈ 〈x〉. Thus
I ⊆ 〈x〉. Since x ∈ I, 〈x〉 ⊆ I, so I = 〈x〉 as required. �

Proposition 2.30. Let R be a principal ideal domain, I ⊆ R a prime ideal. Then
I is a maximal ideal.

Proof. Since R is a principal ideal domain, we have I = 〈p〉 for some p ∈ R. Since
I is prime this implies that p is a prime element. Suppose for a contradiction that
J is an ideal such that I ( J ( R. Then J = 〈x〉 for some x ∈ R. So p ∈ 〈x〉. Thus
p = ax for some a ∈ R. Since p is prime, either p | a or p | x. If p | a then a = bp
for some b ∈ R. Then p = bpx, and since R is a domain this implies 1 = bx. Thus x
is a unit, so J = 〈x〉 = R, contradicting our choice of J . On the other hand, if p | x
then since already we have x | p, so we get p = ux for some unit u by Proposition
2.14. Then I = 〈p〉 = 〈x〉 = J , again contradicting our choice of J . So in both
cases we got a contradiction, and we’re done. �

Definition 2.31. Let R be a ring. We say that R is Noetherian if any increasing
sequence I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals is eventually constant.

Proposition 2.32. Let R be a principal ideal domain. Then R is Noetherian.

Proof. Let I1 ⊆ I2 ⊆ . . . be an increasing sequence of ideals in R. Then
⋃
k<ω Ik

is again an ideal of R. Thus
⋃
k<ω Ik = 〈x〉 for some x ∈ R, since R is a principal

ideal domain. So x ∈ In for some n. But then 〈x〉 ⊆ In, so
⋃
k<ω Ik = In. �

Theorem 2.33. Let R be a principal ideal domain. Then R is a unique factoriza-
tion domain.
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Proof. Pick x1 ∈ R, x1 6= 0. Find a maximal ideal M1 ⊂ R such that 〈x1〉 ⊆ M1.
Since R is a principal ideal domain, M1 = 〈p1〉 for some prime p1 ∈ R. So x1 = p1x2
for some x2 ∈ R, since x ∈ M1. Find a maximal M2 such that 〈x2〉 ⊆ M2. Again
M2 = 〈p2〉 for a prime p2. Then x2 = p2x3 for some x3 ∈ R. Repeat. Notice that
this process stops when some xn+1 is a unit. In this case, we get x1 = p1x2 =
p1p2x3 = . . . = p1 · · · pnxn+1, and the last expression is the required factorization
of x1. If the process never stops then we get a sequence 〈x1〉 ⊆ 〈x2〉 ⊆ 〈x3〉 ⊆ . . ..
Since R is Noetherian by the previous Proposition, we get that there exists n such
that 〈xi〉 = 〈xn〉 for all i ≥ n. In particular, xn and xn+1 are associates. But
xn = pnxn+1, so pn is a unit. But we said that pn is a prime, contradiction. So in
fact the process stops, and we’re done. �

Theorem 2.34. In a principal ideal domain, 〈a, b〉 = 〈gcd(a, b)〉. (More precisely,
〈a, b〉 = 〈q〉 ⇐⇒ q is a gcd of a, b). Thus there exist s, t ∈ R such that gcd(a, b) =
sa+ tb.

Proof. It suffices to show that 〈a, b〉 = 〈q〉 ⇐⇒ q is a gcd of a, b. First, suppose
that 〈a, b〉 = 〈q〉. Then a ∈ 〈q〉, so q | a. Similarly, q | b. Suppose that q′ | a and
q′ | b. Then since 〈q〉 = 〈a, b〉 we have q = sa + tb for some s, t ∈ R. Since q′ | a
and q′ | b, we have q′ | q. So we have shown q is a gcd of a and b.

We omit the converse. �

Example 2.35. Consider F [x, y], the polynomial ring in two variables over a field
F . This ring is a unique factorization domain (though we will not prove it), but it
is not a principal ideal domain. Indeed, 〈x, y〉 is not a principal ideal in this ring.
This is because gcd(x, y) = 1, and there are no s, t ∈ F [x, y] such that sx+ ty = 1.

Recall that in Z we have an effective way, given a, b, of finding s, t such that
sa + tb = gcd(a, b), namely the Euclidean algorithm. This extends to arbitrary
Euclidean domains. Without loss of generality, e(a) ≥ e(b). If b | a then 〈a, b〉 = 〈b〉,
so b = gcd(a, b). We may then take s = 0, t = 1. Otherwise, write a = bq + r,
where e(r) < e(b). Then 〈a, b〉 = 〈b, r〉. Indeed, we have a = bq + r ∈ 〈b, r〉, and
r = a−bq ∈ 〈a, b〉. So now it suffices to solve the problem for b, r. By recursion, find
s′, t′ such that gcd(a, b) = gcd(b, r) = s′b+ t′r. Then gcd(a, b) = s′b+ t′(a− bq) =
t′(s′ − q)b+ t′a. The procedure is guaranteed to stop, since at each stage we have
e(r) < e(b).

Given a principal ideal domain R, and a non-zero x ∈ R, define d(x) to be x with
every prime replaced by 2. That is, write x = p1 · · · pn (which can be done with
n unique, since R is a unique factorization domain). Then set d(x) = 2n. Then
d : R\{0} → N\{0}. This can be extended by d(0) = 0. We have d(xy) = d(x)d(y)
if both are non-zero. In particular, d(xy) ≥ d(x). If a, b 6= 0 then either a ∈ 〈b〉, in
which case we have nothing to say, or 〈q〉 = 〈a, b〉 ) 〈b〉, where q = gcd(a, b). Then
d(q) < d(b). There exist s, t such that q = sa + tb. So d(sa + tb) < d(b). In this
situation sa+ tb plays the role of r in a Euclidean domain. This is the only way in
which d fails to be a Euclidean norm.

Definition 2.36. A Dedekind-Hasse norm is a function d : R→ N such that for
any a, b 6= 0, we have either a ∈ 〈b〉, or there exist q ∈ 〈a, b〉 such that d(q) < d(b).

Theorem 2.37. A ring R is a principal ideal domain if and only if R has a
Dedekind-Hasse norm.
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Proof. In the above paragraph we showed that a principal ideal domain has a
Dedekind-Hasse norm, and we even constructed it. If R has a Dedekind-Hasse
norm, we use the same proof as Theorem 2.33, mutatis mutandis. �

3. Modules

Definition 3.1. Let R be a ring. A module over R is a set with operations
satisfying exactly the same axioms as the axioms for a vector space over a field.
More precisely, a module is an abelian group M along with a map × : R×M →M
such that for any x, y ∈ R,m, n ∈M :

(1) (x+ y)m = xm+ ym
(2) x(m+ n) = xm+ xn
(3) 0m = 0
(4) x(ym) = (xy)m
(5) 1m = m

Example 3.2. (1) Let F be a field. A module over F is exactly a vector space
over F .

(2) A module over Z is exactly the same thing as an abelian group. The
scalar multiplication is nx = x + x + . . . + x (n copies) if n > 0, and
nx = −x− x . . .− x (n copies) if n < 0.

(3) Given a vector space V over a field F and a linear map T : V → V , we can
make V into a module over F [x] by (

∑
aix

i)v =
∑
aiT

i(v). It is easy to
check that this action satisfies the definition of a module.

(4) Given an ideal I ⊆ R, R/I is an R-module in the obvious way, by r[r′] =
[rr′].

(5) If R is non-commutative there are two notions of modules, namely left and
right R-modules. R-mod is the category of left R-modules (so the ring
action is on the left), and mod-R is the category of right R-modules, where
the action of R is on the right. So our above definition is technically the
definition of a left R-module, but the corresponding definition of a right R-
module is clear. We get m(ab) = (ma)b as an axiom, which is not the same
as the corresponding axiom (ab)b = a(bm). So in general, left R-modules
are not the same as right R-modules. Unless otherwise stated, we assume
modules are left modules.

(6) Consider column vectors of length n with coefficients in a (non-commutative)
ring R. This is Rn. This is a module over R (on the left or right). It is
also a module over Mn×n(R), using matrix multiplication. This is a left
R-module with the obvious action, the matrix goes on the left. On the
other hand, the row vectors are the elements of (Rn)T . This is a right
Mn×n(R)-module, again using matrix multiplication.

Definition 3.3. A morphism of R-modules is a function f : M → N (M ,
N both R-modules) such that f is a homomorphism of the underlying abelian
groups, and respects the action of the ring, in the sense that f(rm) = rf(m) for all
r ∈ R,m ∈ M . We think of these as analogous to linear transformations of vector
spaces.

With the above morphisms, R-mod forms a category.

Definition 3.4. The a submodule is a subset closed under all of the relevant
operations.
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Definition 3.5. Given a morphism f : M → N we have ker f = {m ∈M : f(m) = 0},
a submodule of M . We also have im f = {n ∈ N : ∃m ∈Mf(m) = n} is a submod-
ule of N .

Given N ⊆M , we construct M/N in the obvious way.

Theorem 3.6 (Isomorphism Theorems). (1) If φ : M → N is a morphism
then M/ kerφ ∼= imφ.

(2) If A,B ⊆M then A+B/B ∼= A/A ∩B.
(3) If A ⊆ B ⊆M then (M/A)/(B/A) ∼= M/B.
(4) The fourth (lattice) isomorphism theorem also holds.

Definition 3.7. GivenR-modulesM,N , we construct anotherR-moduleM
⊕
N =

{(m,n) : m ∈M,n ∈ N} with pointwise operations inherited from M and N .

Theorem 3.8. Let M,N be R-modules. Let iM : M → M
⊕
N be the morphism

m 7→ (m, 0) and iN : N → M
⊕
N be n 7→ (0, n). Given morphisms φ : M → P

and ψ : N → P there is a unique λ : M
⊕
N → P such that λ ◦ iM = φ and

λ ◦ iN = ψ. The map is λ(m,n) = φ(m) + ψ(n).
Moreover, if Z is any other R-module with the above property, then Z ∼= M

⊕
N .

Thus M
⊕
N is the categorical direct sum of M and N .

Theorem 3.9. Let M,N be R-modules. Then there are projection morphisms
πM : M

⊕
N → M and πN : M

⊕
N → N given in the obvious ways. If P is an

R-module such with morphisms φ : P →M and ψ : P → N then there is a unique
λ : P →M

⊕
N such that πM ◦λ = φ and πN ◦λ = ψ . If Z is any other R-module

with the above property, then Z ∼= M
⊕
N . Thus M

⊕
N is the categorical direct

product of M and N .

Both the notion of categorical direct product and categorical direct sum extend
to infinitely many factors, but there they do not coincide. We will not need this
result.

Example 3.10. (1) If V,W are vector spaces then we know that dim(V
⊕
W ) =

dim(V ) + dim(W ).
(2) If a, b ∈ R with R a domain, and gcd(a, b) = 1, and there exist s, t ∈ R such

that sa+ tb = 1 (for example, we saw that this happens if R is a PID), then
R/〈a〉

⊕
R/〈b〉 ∼= R/〈ab〉. This is the Chinese Remainder Theorem. In fact

the statement is true as rings, but we will for the moment only prove it as
modules.

Proof. We need to construct a map φ : R/〈a〉
⊕
R/〈b〉 → R/〈ab〉 and a map

ψ : R/〈ab〉 → R/〈a〉
⊕
R/〈b〉, and show that the maps are morphisms and

inverses to each other. It suffices to give maps on (resp. to) each factor of
the direct sum, by what we saw above. So we define φ1 : R/〈a〉 → R/〈ab〉
by φ1([r]) = [tbr] and φ2 : R/〈b〉 → R/〈ab〉 by φ2([r′]) = [r′sa]. An
above theorem gives the desired map φ, and it is easy to check that it is a
morphism. On the other hand, we use multiplication by 1 maps for ψ1, ψ2.
Then it is again easy to check that ψ given by the above theorem is a
morphism, and that ψ, φ are inverses. The details are an exercise. �

Now we define a product of modules:



28 CHRISTOPHER EAGLE

Definition 3.11. LetM,N beR-modules. DefineM
⊗

RN =
{∑k

i=1 aimi ⊗ ni : ai ∈ R,mi ∈M,ni ∈ N
}
/relations.

Here m⊗n is just a symbol, which we think of as representing (m,n), and the sum
is a formal sum. The relations are as follows. Consider the set-theoretic Cartesian
product M × N , and the map φ : M × N → M

⊗
N given by (m,n) 7→ m ⊗ n.

The relations are exactly the ones making φ bilinear. So we need (am) ⊗ n =
a(m ⊗ n) = m ⊗ (an). This is the first of the relations. The others are that
(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n and m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2.

Example 3.12. Let R = F be a field, M = V,N = W be vector spaces over F .
Let {vi} be a basis for V , and {wj} be a basis for W . Then {vi ⊗ wj} is a basis
for V

⊗
F W . In particular, if V,W are finite-dimensional then dim(V

⊗
F W ) =

dim(V ) dim(W ).

Proof. We need to prove that {vi ⊗ wj} is a basis for V
⊗

F W . First, consider any∑
aαfα⊗gα where fα ∈ V, gα ∈W . Write fα =

∑
bα,ivi. Similarly, gα =

∑
cα,jwj .

So ∑
aαfα ⊗ gα =

∑
aα

(∑
bα,ivi

)
⊗
(∑

cα,jwj

)
=
∑
α

∑
i

∑
j

aαbα,icα,j(vi ⊗ wj)

Thus {vi ⊗ wj} spans V
⊗

F W .
Now we need to do linear independence. Let {φi} , {ψj} be the dual bases of

{vi} and {wj} in V ∗ and W ∗, respectively.

Claim 3.13. If φ ∈ V ∗ and ψ ∈ W ∗ then φ ⊗ ψ : V
⊗

F W → F given by φ ⊗
ψ(
∑
aαvα ⊗ wα) =

∑
aαφ(vα)ψ(wα) is well-defined.

The above claim is easy to verify, and just involves checking that the relations
quotiented out by in constructing V

⊗
F W are preserved. It is clear that φ⊗ ψ is

linear.
Now assume that

∑
ai,jvi ⊗ wj = 0. Apply φi′ ⊗ ψj′ to both sides. We get∑

ai,jδi,i′δj,j′ = 0, so ai′,j′ = 0 and we got linear independence. �

Claim 3.14. Let R be a ring. If q = gcd(a, b) and q = sa+tb then R/〈a〉
⊗

RR/〈b〉 ∼=
R/〈q〉.

Proof. Define φ : R/〈a〉
⊗

RR/〈b〉 → R/〈q〉 by [r1]a ⊗ [r2]b 7→ [r1r2]q, extended
linearly. We need to check that this is well-defined, but this is easy. Define also
ψ : R/〈q〉 → R/〈a〉

⊗
RR/〈b〉 by [r]q 7→ [r]a ⊗ [1]b = [1]a ⊗ [r]b. Again we need

to check that this is well-defined. It suffices to note that [0]q = [q]q = [sa + tb] =
[sa] + [tb] 7→ [sa]a ⊗ [1]b + [1]a ⊗ [tb]b = 0. Then it is easy to check that the
composition is the identity. �

Example 3.15. Let F be a field, and consider F [x]. It is a module over F . Similarly,
F [y] is an F -module. By a previous exercise we can compute a basis, and hence
find that F [x]

⊗
F F [y] ∼= F [x, y].

Example 3.16. This example is not quite right, but is morally true. Suppose that
X,Y are topological spaces. Then C(X), the continuous functions from X to R is
a real vector space. Similarly for C(Y ). So we can ask what is C(X)

⊗
R C(Y )?

Polynomials are dense in the space of continuous functions, so the previous example
says that, morally speaking, we might expect that C(X)

⊗
R C(Y )“ ∼= ”C(X × Y ).
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But this argument used analytic techniques (density), which we cannot apply in
general. There is, however, an injective map C(X)

⊗
R C(Y ) → C(X × Y ), and

if X and Y are sufficiently well-behaved (for example, compact Hausdorff suffices,
lesser conditions might also do) then the image of this map is dense.

Proposition 3.17. There is a bilinear map ι : M × N → M
⊗
N , given by

ι(m,n) = m ⊗ n. If P is another R-module and there is a bilinear map F :

M ×N → P then there exists a unique module homomorphism f̃ : M
⊗

RN → P

such that f̃ ◦ ι = F .

Proof. We must define f̃(m⊗ n) = F (m,n). Then we must define f̃(
∑n
i=1 aimi ⊗

ni) =
∑n
i=1 aiF (mi, ni). Since we had no choice this establishes uniqueness and

the relation f̃ ◦ ι = F . We only need to know that f̃ is well-defined. But this is
clear because F is bilinear. �

Proposition 3.18. The property in Proposition 3.17 determines M
⊗

RN . That

is, if we had another module M
⊗̂
N is such that there is a bilinear map ι′ : M×N →

M
⊗̂
N such that if f : M×N is bilinear then there exists a unique f̃ : M

⊗̂
N → P

making the diagram commute, then M
⊗̂
N ∼= M

⊗
RN .

Proof. In fact there is a unique isomorphism respecting the ι’s, but we will not
show that here.

Let P = M
⊗

RN . Then there is a map ι : M × N → P , namely ι. There

is also ι′ : M × N → M
⊗̂
N . By the two universal properties we get unique

homomorphisms M
⊗

RN → M
⊗̂
N and M

⊗̂
N → M

⊗
RN , and it is an easy

exercise to see that these maps are inverse to one another. �

Theorem 3.19. (R − mod,
⊕
,
⊗
, 0, R) is a “ring”, in as much as this makes

sense. More precisely,

(1) (M
⊕
N)
⊕
P ∼= M

⊕
(N
⊕
P ).

(2) (M
⊗

RN)
⊗

R P
∼= M

⊗
R(N

⊗
P ).

(3) (M
⊕
N)
⊗

R P
∼= M

⊗
R P

⊕
N
⊗

R P .
(4) M

⊗
RN

∼= N
⊗

RM .
(5) M

⊕
0 ∼= M .

(6) M
⊗

R 0 ∼= 0.
(7) M

⊗
RR
∼= M .

Proof. We just show the last claim. Define a map by m⊗r 7→ rm, extended linearly.
Define also m 7→ m ⊗ 1. It is easy to check that both maps are well-defined and
inverse to each other. �

Example 3.20. Q is a Z-module in an obvious way, as is Zn. Thus Zn
⊗

ZQ is also
a Z-module. We can calculate which one it is:

Q
⊗
Z
Zn ∼= (Q

⊗
Z
Z)n

∼= Qn

More generally, if φ : R → S is a morphism of rings, then MS := S
⊗

RM is
an S-module. Indeed, the action is s(s′ ⊗ m) = (ss′ ⊗ m). We say that MS is
obtained from M by extension of scalars. In particular, (Rn)S = Sn, by the
same calculation as we did above.
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Claim 3.21. Over the ring R = Z, if M ∼= Zk ⊕
⊕
Z/〈ni〉, then k is unique.

Proof. Consider MQ, a Q-module, that is, a Q-vector space. So it has some well-
defined dimension. Moreover, for any n, we have Q

⊗
Z Z/〈n〉 = 0. Indeed, a basic

tensor is a⊗ [j]n = n an ⊗ [j]n = a
n ⊗ [nj]n = a

n ⊗ [0] = 0 Thus:

dim(MQ) = dim

(
Qk ⊕

⊕(
Q
⊗
Z
Z/〈ni〉

))
= dim(Qk)

= k

�

Definition 3.22. A functor is a map F : C → D where C,D are categories, such
that if φ : A→ B is a morphism then there is a morphism Fφ : FA→ FB, in such
a way that F (φ ◦ ψ) = Fφ ◦ Fψ. Moreover, the identity morphisms are mapped to
identity morphisms.

Example 3.23. Let C be the category of groups with their homomorphisms, and let
S be the category of sets with their functions, and let F : C → S be the functor
which “forgets” the group structure. One can construct many similar examples of
forgetful functors.

Let C be the category of pointed topological spaces with their basepoint-preserving
continuous maps. Let D be the category of groups with homomorphisms. Then the
functor F which takes (X, p) to its fundamental group is a functor.

Definition 3.24. A bifunctor is a map F : C × D → E , where C,D, E are cate-
gories, such that F is a functor in each variable separately.

Example 3.25.
⊗

is a bifunctor. That is, fix a module N , then the map M 7→
M
⊗
N is a functor, and similarly if we fix a module M then the map N 7→M

⊗
N

is also a functor. In more detail, suppose that M1 →f M2. Then there is a map
f ⊗N : M1

⊗
N → M2

⊗
N , which is given by the linear extension of m1 ⊗ n 7→

f(m1)⊗n. One needs to check that this is well-defined, but this is not difficult, since
f is a module morphism. One also needs to check that if M1 7→g M2 7→f M3, then
(f ◦ g)⊗N = f ⊗N ◦ g⊗N . This is also obvious. Note that if we have morphisms
f : M1 →M2 and g : N1 → N2 then there is a map f ⊗ g : M1

⊗
N1 →M2

⊗
N2,

given by the linear extension of m1 ⊗ n1 7→ f(m1)⊗ g(n1).

Now we can return to our main goal, the structure theorem for finitely generated
modules over Principal Ideal Domains.

Definition 3.26. AnR-moduleM is finitely generated if there exist x1, . . . , xn ∈
M such that the map Rn →ρ M given by (r1, . . . , rn) 7→

∑n
i=1 rixi is surjective.

We now sketch the existence part of the theorem we are aiming for, and later we
will do the details.

If we are lucky there will be some finite c such that the map Rc 7→A Rn is a
surjection into the kernel of ρ. We will later see that in fact this always happens.
We can think of A as an n × c matrix over R. A contains a complete description
of M , since by the first isomorphism theorem M ∼= Rn/ im(A). A is not unique,
since the same is true of any A′ obtained from A by A′ = PAQ where P,Q are
invertible. Over a field multiplying by P on the left is equivalent to performing row
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operations, and multiplying by Q on the right is equivalent to performing column
operations. So the question is, given A ∈Mn×c(R), how nice a form can A be given
by performing row and column operations?

Let us think about the case when we are over a field, A = (ai,j). If every ai,j is
0 then we are happy, and in fact then M ∼= Rn. Otherwise, we can put the matrix
into a form where the first several entries on the diagonal are 1, and the rest of the
matrix is 0.

Now we do the same over a ring R. Again if everything is 0 then there is nothing
to do. Unfortunately, if we have a row (a · · · b · · · ) we cannot add −b/a times col-
umn 1 to get rid of the b. But suppose that we are in a Euclidean domain, and have
a row (6 · · · 40 · · · ). We cannot get rid of the 40 directly, but we can subtract 6× col-
umn 1 to get (6 · · · 4 · · · ), and swapping columns (4 · · · 6 · · · ). Again we can do this
process to get (4 · · · 2 · · · ), and flipping, (2 · · · 4 · · · ). Now we can get rid of the 4,
and get (2 · · · 0 · · · ). Repeating the same process we can eventually replace each row
(a1a2 · · · an) by (q0 · · · 0) where q = gcd(a1, . . . , an). Do the same over columns. We
eventually come to a matrix with q it the top left corner, 0’s elsewhere on the first
row and column, and q divides every entry of the remainder of the matrix. Now we
can repeat, never touching the first row and column again. Eventually we get to a
matrix with ai’s in the first m places of the diagonal, and the rest 0, and such that
a1 | a2 | a3 · · · | am. Call this matrix A′. We then have M ∼= Rn/ im(A′) =
〈e1, . . . , en〉/〈a1e1, a2e2, . . . , amem〉 = Rn−m

⊕
R/〈a1〉

⊕
· · ·
⊕
R/〈am〉. We al-

ready saw that if gcd(a, b) = 1 then R/〈a〉
⊕
R/〈b〉 ∼= R/〈ab〉, so using this and

factoring the ai’s into primes we can turn the above direct sum into the desired
form. Now let us do this rigourously.

Theorem 3.27. If M is a finitely generated module over a principal ideal domain
R then M is isomorphic to a direct sum

M ∼= Rk
⊕⊕

R/〈psii 〉

where each pi ∈ R is prime and si ∈ R.

Proof. M can be written as 〈x1, . . . , xn〉/〈a1,1x1 + a1,2x2 + · · · + a1,nxn = 0, . . .〉.
Let r1 be the relation a1,1x1 + · · · + a1,nxn = 0, and so on, so {ri : i < κ} is the
set of all the relations being quotiented by, for some (possibly infinite) cardinal κ.
Among all such presentations of M using precisely n generators consider one in
which a1,1 6= 0, and the Dedekind-Hasse norm d(a1,1) is minimal. Without loss of
generality, r1 = a1,1x1 + 0 and ai,1 = 0 for all i < κ. This is the key step of the
proof, and needs some justification. First,

Claim 3.28. a1,1 | a1,j for all j, and a1,1 | ai,1 for all i.

Proof. Let z = a1,1, and b = a1,j be such that x 6| y. Let x = x1, y = xj . Then
r1 = ax + by + · · · . We are in a PID, so we have q = gcd(a, b) = ta + sb for some
t, s ∈ R. Let x′ = a

qx+ b
qy and y′ = −tx+sy. Then x = sx′− b

qy
′ and y = tx′+ a

q y
′.

So we may write r1 = ax+ by + · · · = a(sx′ − b
qy
′) + b(tx′ + a

q y
′) + · · · , where the

other terms do not involve x and y, hence not x′, y′ either. Expanding, we get
r1 = qx′ + 0y′ + · · · . So we found a presentation of the module in which the first
coefficient is less than the one we started with, contradicting our original choice of
presentation. This proves the first assertion.

Now suppose that r1 = ax+ · · · , and r2 = bx+ · · · (here r2 is any other relation).
We claim that a | b. If not, let q = gcd(a, b), which has smaller norm than a. Write
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q = sa + tb. Then replace r1, r2 by r′1 = sr1 + tr2, r
′
2 = − b

q r1 + a
q r2. It is easy to

check that r1, r2 are equivalent to r′1, r
′
2. But here r′1 = sax+ btx+ · · · = qx+ · · · ,

contradicting minimality of a again. �

Now we finish the proof of the key step. We have a1,1x1 + a1,2x2 + · · · +
a1,nxn, · · · , a∞,1x1+· · ·+a∞,nxn, where we write a∞,i to emphasize that there may
be infinitely many relations. By the claim a1,1 | a1,i for all i and a1,1 | aj,1 for all j.
By standard column operations we can replace these relations by a1,1x1+0+· · ·+0,
a2,1x1+∗, . . ., where the ∗s are non-zero. We still have a1,1 | aj,1 for all j, so adding
multiples of the first row to each other row (possibly infinitely many operations)
we get to the form we claimed. That is, we get relations which can be expressed as
the (infinite) matrix:  a1,1 0 0

0 ∗ ∗
0 ∗ ∗


Where here we do not know what the ∗s are. The operation is well-defined, and

moreover it does not change the span of the rows. Moreover, a1,1 | ∗ for any ∗ in
the rest of the matrix. Continuing by induction, after a finite number of steps we
get the following form, with 0’s elsewhere.

a1,1 0 0 0
0 a2,2 0 0
0 0 am,m 0
0 0 0 0


Thus M = Rn/〈a1,1e1 = 0, · · · , am,mem = 0〉, and we finish as before. �

We next will show uniqueness. The ideas are the same as in Claim 3.21. To
start,

Proposition 3.29. Let R be a domain. Then there is a unique (up to isomorphism)
field Q(R), called the field of fractions of R, such that there is an injection
ι : R → Q(R) such that if φ : R → F is a ring morphism and F is a field then
there exists a unique map ψ : Q(R) → F such that ψ ◦ ι = φ. Q(R) looks like{
r
s : r, s ∈ R, s 6= 0

}
.

We will come back to proving this, after a brief digression:

Definition 3.30. We say that S ⊆ R \ {0} is multiplicative if for all a, b ∈ S we
have ab ∈ S, and 1 ∈ S.

Proposition 3.29 will follow immediately from the following more general claim
applied to S = R \ {0}.

Proposition 3.31. Let R be a domain, and S ⊆ R \ {0} be a multiplicative set.
Then there exists a unique (up to isomorphism) ring S−1R and an injective ring
morphism ι : R → S−1R, such that any map R → A which sends S → A∗ factors
through S−1R.

Example 3.32. (1) S = R \ {0}. Then S−1R = Q(R) from Proposition 3.29.
(2) Let P ⊆ R be a prime ideal, and let S = R \ P . Then S is multiplicative.

Indeed, if a, b ∈ S, then a, b 6∈ P . Then ab 6∈ P , since if ab ∈ P then since
P is prime we would get a ∈ P or b ∈ P . In this case S−1P is called the
localization of R at P .
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(3) Let R = Z, and let S = {2n : n ∈ N}. Then S−1R =
{
a
2k

: a ∈ Z, k ∈ N
}

.
This is the ring of dyadic rationals. One can, of course, use a number
other than 2. Note that this is not the same thing as the 2-adic numbers.

Proof Sketch of Proposition 3.31. We define S−1R = {(r, s) : r ∈ R, s ∈ S} / ∼,
where ∼ is given by (r1, s1) ∼ (r2, s2) ⇐⇒ r1s2 = r2s1. It is clear that the
relation ∼ is symmetric and reflexive, but transitivity needs to be checked. Sup-
pose (r1, s1) ∼ (r2, s2) ∼ (r3, s3). Then r1s2 = r2s1 and r2s3 = r3s2. Thus we can
multiply to get r1s2s3 = r2s1s3 and r2s3s1 = r3s2s1. Thus r1s2s3 = r3s2s1, so
r1s3 = r3s1 since we are in a domain. So (r1, s1) ∼ (r3, s3), as claimed. So ∼ really
is an equivalence relation.

Now we need to define operations to make this set into a ring. We define the 0
element to be (0, 1). 1 will be (1, 1). We define (a, b) + (c, d) = (ad + bc, bd), and
(a, b)(c, d) = (ac, bd). It is easy to check that all of these are well-defined. Then
we need to check that this satisfies the axioms of a commutative ring, but this is
also straightforward. The map ι : R → S−1R is given by ι(r) = [(r, 1)]. We need
to check that ι is injective. Suppose ι(r1) = ι(r2). Then [(r1, 1)] = [(r2, 1)], so
r1 · 1 = 1 · r2, so r1 = r2 and ι is injective. It is just as easy to check that ι is a ring
morphism. Finally, we need to see that maps R→ A with S → A∗ factor uniquely
through S−1R. But this is also clear, as are all of the uniqueness claims. �

Proposition 3.33. Suppose that M ∼= Rk ⊕
⊕n

i=1R/〈pi〉si . Then the right side is
uniquely determined by M .

Proof. First, observe that (as in Claim 3.21 we have:

dim(MQ(R)) = dim(Q(R)
⊗
R

M)

= dim(Q(R)k) +
∑

dim

(
Q(R)

⊗
R

R/〈psii 〉

)
= k

Here the last line follows because Q(R)
⊗

RR/〈b〉 = 0 for any 0 6= b ∈ R. Indeed, a
basic tensor is a⊗ [r]b = a

b ⊗ [br]b = a
b ⊗ [0]b = 0. Thus k was uniquely determined.

So we only need to show that we can recover the pi and si’s.
Next, let q ∈ R be a prime. Then since R is a PID R/〈q〉 is a field. Note that

R
⊗

RR/〈q〉 = R/〈q〉. Moreover, R/〈a〉
⊗

RR/〈b〉 ∼= R/〈gcd(a, b)〉, so if q 6= pi
then R/〈q〉

⊗
RR/〈p

si
i 〉 = 0. If q = pi, then we get R/〈q〉, and the dimension is 1.

Here really equality is up to associates. So we have:

dim(MR/〈q〉) = k + |{i : pi, q are associates}|

In the above we did not get exactly what we wanted, but now we will. Consider
the kernel of the map m 7→ psm for some s. This kernel is a submodule of M , call
it K. We could compute dimR/〈p〉KR/〈p〉, and hope to recover si. But if one tries
this, it is quickly seen to fail.

Consider instead I = im(m 7→ psm), a submodule ofM . We compute dimR/〈p〉(IR/〈p〉).
There are several cases to handle. The places we can be mapping from are:

• R
• R/〈qt〉 for some q not an associate to p
• R/〈pt〉 where s ≥ t
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• R/〈pt〉 where s < t

For each possibility, we need to find the image of multiplication by ps. The answers
are:

• R 7→ 〈ps〉 = psR ∼= R (as an R-module).
• R/〈qt〉 7→ R/〈qt〉, since ps is invertible mod qt, since gcd(q, p) = 1.
• R/〈pt〉 7→ 0, since t ≤ s
• R/〈pt〉 7→ 〈ps〉/〈pt〉, since s < t

The next thing to do is take each of these and tensor with R/〈p〉. We get:

• R/〈p〉
• 0, by the fact R/〈a〉

⊗
R/〈b〉 ∼= R/〈gcd(a, b)〉

• 0
• R/〈p〉

Now we count the dimensions over R/〈p〉. They are:

• 1
• 0
• 0
• 1

So we have shown that dimR/〈p〉(im(m 7→ psm)) = k+|{i : pi, p are associates and si > s}|.
From above we already know k, so for each prime we know in how many factors
it appears with power greater than s = 1, 2, 3, . . .. This is enough to recover the
si. �

We are now done with the main theorem. We have two corollaries to go.

Corollary 3.34. Let A be a finitely generated abelian group. Then we can uniquely
write A ∼= Zk ⊕

⊕
Z/〈psii 〉 ∼= Zk

⊕
Z/〈a1〉

⊕
· · ·
⊕
Z/〈an〉. In the first expression

each pi is prime, and in the second expression a1 | · · · | an.

Proof. Any abelian group is a Z-module. To get between the two forms, use that,
for example, Z/〈12〉 = Z/〈22〉

⊕
Z/〈3〉. One can also go the other way, but this is

left as an exercise. The first expression is unique up to ordering (assuming primes to
be positive), while the second is actually unique, which is part of the exercise. �

Corollary 3.35. If F is a finite field then F ∗ is a cyclic group.

Example 3.36. Let F = Z/〈17〉. Then |F ∗| = 16. We know that F ∗ is abelian, so
by Corollary 3.34 we get that F ∗ is one of Z/〈16〉,Z/〈8〉×Z/〈2〉, . . .. Corollary 3.35
will tell us that F ∗ ∼= Z/〈16〉.

Proof of Corollary 3.35. Write F ∗ = Z/〈a1〉
⊕
Z/〈a2〉

⊕
Z/〈an〉 with a1 | · · · | an,

as in Corollary 3.34. Consider the roots of the polynomial Xa1 − 1 in F . By
something we will see later, this polynomial has at most a1 roots, since it has
degree a1. On the other hand, �

3.1. Jordan Canonical Form. Let V be a finite dimensional vector space over
a field F . Let T : V → V be a linear transformation. Then we can make V into
an F [t] module by (

∑
ait

i)v :=
∑
aiT

iv. This module is finitely generated (by
any basis of V , though in general even fewer elements will suffice to generate it
as an F [t] module). So by our big theorem, V is isomorphic (as an F [t] module)
to (F [t])k ⊕

⊕
F [t]/〈psii 〉 where pi’s are primes. Note that this isomorphism is, in
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particular, an isomorphism as an F -module, so we must have that k = 0 since F [t]
is an infinite-dimensional vector space over F . So we have V ∼=

⊕
F [t]/〈psii 〉.

Assume that F is algebraically closed. In such a field every f ∈ F [t] has a root
λ ∈ F , and then t − λ | f , by the division algorithm in F [t]. So we see that if the
degree of f is not 1 then f is not prime. On the other hand, it is easy to check that
all elements of the form t− λ is prime, as are their unit multiplies (where a unit in
F [t] is just a scalar, by a result on a homework assignment). So we have

V ∼=
⊕

F [t]/〈(t− λi)si〉

As a vector space over F , we have that dim(F [t]/〈(t−λi)s〉 = s, since the remainder
of any polynomial when divided by t−λi is of degree at most s−1. One basis for this
vector space is

{
1, t, t2, . . . , ts−1

}
, but a nicer basis is

{
1, t− λ, (t− λ)2, . . . , (t− λ)s−1

}
.

Let us define ei = (t−λ)i for i = 0, . . . , s− 1, and for convenience let es = 0. Then
(t− λ)ei = ei+1, so the matrix representation of [t− λ](ei) in this basis is

[t− λ] =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


So

[t] = [t− λ] + λI

=

 λ 0 0
1 λ 0
0 1 λ


Thus we have found a basis (namely, the union of the bases we just found for
the factors) such that T has a matrix representation which is block diagonal with
blocks Bλi,si . This is the Jordan Canonical Form. It is canonical, meaning
that it is unique up to permuting the blocks. This is because we can essentially do
the above argument backwards, and then at the end apply the uniqueness of the
original decomposition of V .

How does this work in practice? Let T =

(
3/2 1/2
1/2 3/2

)
. We want to recover

the matrix used in the proof of the structure theorem. It is a matrix A ∈M(F [t]).
The way we found this originally was to find some list of generators (not necessarily
minimal), so we can take the generators to be the standard basis vectors for R2,
call then v1, v2. Then tv1 = Tv1 = 3

2v1 + 1
2v2. The corresponding relation is

( 3
2 − t)v1 + 1

2v2 = 0. So the first column of A is

(
3
2 − t

1
2

)
. Note that this is the

same as the first column of T − tI. Similarly, we get

A =

(
3
2 − t

1
2

1
2

3
2 − t

)
= T − tI

How do we know that these are all of the relations? Given any f ∈ F [t] we can
write f(t)vi =

∑
ajvj with each aj ∈ F . We wanted to find the kernel of the map

R2 → V , where R2 = 〈f(t)v1 + g(t)v2〉. This map is always surjective, and we
found a one-sided inverse vi 7→ 1vi. More work is required to see exactly why what
we have done suffices.
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The next thing to do is to row and column reduce the matrix A. We have:(
3
2 − t

1
2

1
2

3
2 − t

)
→
(

1 3− 2t
3− 2t 1

)
→
(

1 0
3− 2t 1− (3− 2t)2

)
→
(

1 0
0 4t2 − 12t+ 8

)
→
(

1 0
0 t2 − 3t+ 2

)
We conclude that the F [t] module V is isomorphic to F [t]/〈1〉⊕F [t]/〈t2−3t+2〉 =
F [t]/〈t2−3t+2〉. Since F is algebraically closed, t2−3t+2 is not prime. It factors as
t2−3t+2 = (t−2)(t−1). Thus V ∼= F [t]/〈(t−1)(t−2)〉 ∼= F [t]/〈t−1〉⊕F [t]/〈t−2〉.
Thus the Jordan form of the original matrix T is

[T ] =

(
1 0
0 2

)
To actually find the basis in which this is the form of T we would need to explicitly
write down the isomorphism, tracing how we changed the basis by doing row and
column operations. It is also worth thinking about why this process is really the
same process as the diagonalization process learning in first year linear algebra.

A crucial piece of the process is to find a polynomial to play the role of t2−3t+2
in the above example. The necessary result is the following:

Theorem 3.37 (Cayley-Hamilton). Let A be any n× n matrix (over any commu-
tative ring R), and define χA(t) = det(tI −A) ∈ R[t]. Then χA(A) = 0.

Proof. Omitted. A tempting proof is to write χA(A) = det(AI −A) = det(0) = 0.
This argument is, of course, nonsense. For example, det(0) = 0 is a scalar, while
χA(A) is a matrix. �

4. Unboxing Day

Recall that the goal is to unpack the Jordan Canonical Form, and see how it
yields diagonalization. We will not succeed.

4.1. Diagonalization. Recall that given A ∈ Mn×n(F ), to diagonalize one finds
the eigenvalues λ1, . . . , λn, corresponding eigenvectors v1, . . . , vn, and sets C−1 =
(v1| · · · |vn), then CAC−1 = D = diag(λi).

4.2. Jordan Form. Again we fix AinMn×n(F ). Fn =: V is an R-module, R =
F [t], by setting tu = Au. The generators for V are the standard basis vectors ei.
So we have a map π : Rn → V given by ei 7→ ei. So tkei = Akei. This is a
module morphism. We need a list of relations for kerπ. Doing this is the same as
finding a map M : Rn → Rn such that the images of the standard basis under M
precisely span kerπ. (We will return later to why the power of R is the same on
the domain and codomain of M). Let Pi : Rn → Rn be an invertible matrix and let
Qi : Rn → Rn be invertible as well (see them in detail later). Let Mi = Q−1i MPi.
Then the lower row of the diagram is isomorphic to the upper row (see handout).

The challenge is to find such P,Q such that the matrix of relations is as simple
as possible. If V ∼= R/〈p1〉 ⊕ · · · ⊕ R/〈pn〉 = R/〈t − λ1〉 ⊕ · · · ⊕ R/〈t − λn〉 then
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the matrix of relations is

 t− λ1 · · · 0
0 · · · 0
0 · · · t− λn

. Call this matrix M2, then

V ∼= Rn/ im(M2). This is clear by thinking of how M2 acts on column vectors from
Rn. Recall that if the ai’s are relatively prime then

⊕
R/〈ai〉 ∼= R/〈

∏
ai〉. The

matrix giving this is diagonal with 1’s until the last place, which has
∏
ai in the

bottom right.
In the diagram on the handout, we claim that the matrix M of relations is given

by M = tI −A.

Proof. Expand A as A = (aij). We first claim that anything of the form tei − Aei
is a relation (where ei is a standard basis vector of F ). That is, we are claiming
that π(tei −Aei) = 0. But this is clear, since π(tei) = Aei, while π(Aei) = Aei.

Now we claim that these are all of the relations. That is, we are claiming that if
π(u) = 0, then u is an R-linear combination of the ri := tei−Aei. This is the same
as showing that im(tI − A) = {relations}. Let ι : V → Rn be the map sending
the ith basis vector of V to ei. ι is F -linear, but may not be R = F [t]-linear. For
any u, we will show that u− ι(π(u)) is a linear combination of the relations ri. It
suffices to do this for the case u = tkei. Then

u− ι(π(u)) = tkei −Akei
= (tkI −Ak)ei

= (tI −A)(tk−1I + tk−2A+ · · ·+ t0Ak−1)ei

∈ im(tI −A)

Now we see that if π(u) = 0 then u itself will be a combination of the ri’s, as
claimed. �

Now we need to know how P2, Q2 are related to M2, C where C is the matrix from
undergraduate diagonalization. One direction is easy, given C take P2 = Q−12 = C,
and see the handout. Now suppose that we are given P2, Q2. If it turns out that
P2, Q2 are matrices of scalars, then one easily checks that P2 = Q−12 , and we recover
C. But there is no reason to believe this will be the case.

We already have a map ι : V → Rn, so C = π′P2ι. Cei = π′(P2ei). Write
P2ei =

∑
tkuk where uk ∈ Fn, then π′(P2ei) =

∑
Dkuk. Put another way, write

P2 =
∑
tkP2,k where P2,k ∈Mn×n(F ). Then C =

∑
DkP2,k. That is, C = LDP2,

where LD is left-evaluation at D.
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