Problem 2. Let G be a group and let Z(G) denote its center.

1. Show that if G/Z(G) is cyclic then G is Abelian.

Let xZ(G) be the generator for Z(G). Since $Z(G) \triangleleft G$ (obvious) we know from understanding cosets that any $g \in G$ can be written as x^mz for some $x^m \in G$ and $z \in Z(G)$.

Therefore for all $g_1g_2 \in G$, $g_1g_2 = (x^az_1)(x^bz_2) = x^az_1x^bz_2 = x^{a+b}z_1z_2$ (since $z_1 \in Z(G)$) = $x^bx^az_2z_1 = x^bz_2x^az_1 = g_2g_1$ for all $g_1, g_2 \in G$ and therefore G is Abelian. \square

2. Prove that if the group Aut(G) of automorphisms of G is cyclic, then G is Abelian.

Since $Inn(G) \prec Aut(G)$, Inn(G) must also be cyclic. Now we will prove that $Inn(G) \cong G/Z(G)$. First let $\phi: G \to Inn(G)$ by $\phi_g =$ inner automorphism $G \to G$ by g. ϕ is clearly a homomorphism because for $a, b \in G$, $\phi_{ab} = abGb^{-1}a^{-1} = \phi_a(\phi_b)$. $Ker\phi$ is clearly equal to Z(G). And by the first isomorphism theorem we know that $G/Ker\phi \cong im\phi \to G/Z(G) \cong Inn(G)$ and by the properties of isomorphisms we know that if Inn(G) is cyclic then G/Z(G) is also cyclic and in Part 1 we proved that if G/Z(G) is cyclic then G is Abelian. Therefore G is Abelian.