MAT401-2008 Spring - Term Test Solutions

Problem 1: First of all, since multiplication $(\bmod 10)$ is commutative, our ring is commutative. This is a prerequisite for the existence of a unity. Now to find out whether the ring has a unity, we simply construct the multiplication table with all possible pairs of elements. There are $5+4+$ $3+2+1=15$ such independent pairs.

$$
\begin{array}{llllll}
\times & 0 & 2 & 4 & 6 & 8 \\
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 4 & 8 & 2 & 6 \\
4 & 0 & 8 & 6 & 4 & 2 \\
6 & 0 & 2 & 4 & 6 & 8 \\
8 & 0 & 6 & 2 & 8 & 4
\end{array}
$$

It is clear from this table that $6 x=x(\bmod 10) \forall \mathrm{x} \in\{0,2,4,6,8\}$ so 6 is the unity of the ring. Also we see that no other element satisfies the requirements of being a unity, which is consistent with the property that a unity, if it exists in a ring, is unique.

Problem 2: refer to Chapter 13 of the textbook, in particular the definitions on p. 248 and 250, as well as Theorem 13.2

Problem 3: refer to Theorem 14.4 in the textbook and Theorem 2 as presented in the 23 Jan lecture

Problem 4: Suppose we have a ring homomorphism $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{10}$. Let $\phi(1)=t \in \mathbb{Z}_{10}$. By the fact that ϕ preserves the operation of addition, for any $n \in \mathbb{Z}_{6}$ we have

$$
\phi(n)=\phi(n 1)=n \phi(1)=n t(\bmod 10)
$$

which completely defines the action of the homomorphism on all elements of \mathbb{Z}_{6}. We can narrow down the possibilities for t because

$$
\phi(1)=t=\phi\left(1^{2}\right)=\phi(1) \phi(1)=t^{2}
$$

so t must satisfy $t^{2}=t(\bmod 10)$ meaning $t \in\{0,1,5,6\}$. Finally we must impose the requirement that for any $a, b \in \mathbb{Z}_{6}, \phi(a+b)=\phi(a)+\phi(b)$ and
$\phi(a b)=\phi(a) \phi(b)$. Take, for example, $a+b=6 q_{1}+r_{1}$.

$$
\begin{aligned}
\phi(a+b) & =\phi\left(r_{1}\right) \\
& =t\left[(a+b)-6 q_{1}\right] \\
& =t a+t b-6 q_{1} t \\
& =\phi(a)+\phi(b)-6 q_{1} t
\end{aligned}
$$

Likewise with $a b=6 q_{2}+r_{2}$

$$
\begin{aligned}
\phi(a b) & =\phi\left(r_{2}\right) \\
& =t\left[(a b)-6 q_{2}\right] \\
& =t a b-6 q_{2} t \\
& =t^{2} a b-6 q_{2} t \\
& =\phi(a) \phi(b)-6 q_{2} t
\end{aligned}
$$

so if we require $\phi(a+b)=\phi(a)+\phi(b)$ and $\phi(a b)=\phi(a) \phi(b)$, where the equalities are $(\bmod 10)$, then we must have $6 q_{1} t=6 q_{2} t=0(\bmod 10) \forall q_{1}$, q_{2}. This implies $10 \mid 6 t$ which further restricts our choices to $t \in\{0,5\}$

Problem 5: Let us define

$$
g(x) \equiv f(x)-\left[\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right]
$$

and observe that

$$
\begin{gathered}
g(a)=f(a)-f(a)=0 \\
g(b)=f(b)-[f(b)-f(a)+f(a)]=0
\end{gathered}
$$

Now because $g(a)=0$ we can write

$$
g(x)=(x-a) q_{1}(x)
$$

In addition we have

$$
g(b)=(b-a) q_{1}(b)=0
$$

and since $a \neq b$, this means that $q_{1}(b)=0$ because $F[x]$ is a domain. Therefore we can write

$$
q_{1}(x)=(x-b) q_{2}(x)
$$

$$
g(x)=(x-a)(x-b) q_{2}(x)
$$

and hence $f(x)$ can be written as

$$
\begin{aligned}
f(x) & =g(x)+\frac{f(b)-f(a)}{b-a}(x-a)+f(a) \\
& =(x-a)(x-b) q_{2}(x)+\frac{f(b)-f(a)}{b-a}(x-a)+f(a)
\end{aligned}
$$

Finally, we know when $f \in F[x]$ is divided by $(x-a)(x-b)$ the expression

$$
f(x)=(x-a)(x-b) q(x)+r(x)
$$

is unique, where $r(x)$ is the remainder and $\operatorname{deg}[r(x)]<\operatorname{deg}[(x-a)(x-b)]=2$. Therefore it is clear by inspection that the remainder is

$$
r(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)
$$

So if we divide $f(x)=x^{2008}$ by $x^{2}-1=(x+1)(x-1)$ we have $a=-1$ and $b=1$ so

$$
r(x)=\frac{f(1)-f(-1)}{1-(-1)}(x-(-1))+f(-1)
$$

But clearly $f(1)=f(-1)=1$ so $r(x)=1$
Problem 6: Eisenstein's criterion says that for $f \in \mathbb{Z}[x]$ where

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}
$$

if \exists a prime p such that $\mathrm{p}\left|a_{n}, \mathrm{p}\right| a_{j}$ for $j \in\{0,1,2 \ldots n-1\}$ and $p^{2} \nmid a_{0}$, then f is irreducible over \mathbb{Z}. Since polynomials irreducible over \mathbb{Z} are also irreducible over \mathbb{Q}, f is thus also irreducible over \mathbb{Q}. Now we simply observe that in our case f satisfies Eisenstein's criterion for $p=5$, so it is irreducible over \mathbb{Q}

