Problem Set 11 - MAT257

February 1, 2017

Disclaimer-This page has been typeset by a student as a convenient consolidation of the homework problems. There inevitably will be mistakes; always defer to the official handout!

Problems marked with $*$ are to be sumbitted for credit.

1 Munkres §23 (p.202)

1. Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the map $\alpha(x)=\left(x, x^{2}\right)$; let M be the image set of α. Show that M is a 1-manifold in \mathbb{R}^{2} covered by the single coordinate patch α.
2. Let $\beta: \mathbb{H}^{1} \rightarrow \mathbb{R}^{2}$ be the map $\beta(x)=\left(x, x^{2}\right)$; let N be the image set of β. Show that N is a 1-manifold in \mathbb{R}^{2}.

* 3. (a) Show that the unit circle S^{1} is a 1-manifold in \mathbb{R}^{2}.
(b) Show that the function $\alpha:[0,1) \rightarrow S^{1}$ given by

$$
\alpha(t)=(\cos 2 \pi t, \sin 2 \pi t)
$$

is not a coordinate patch on S^{1}.
4. Let $A \subset \mathbb{R}^{k}$ be open; let $f: A \rightarrow \mathbb{R}$ be of class \mathcal{C}^{r}. Show that the graph of f is a k-manifold in \mathbb{R}^{k+1}.
5. Show that if M is a k-manifold without boundary in \mathbb{R}^{m}, and if N is an l-manifold in \mathbb{R}^{n}, then $M \times N$ is a $k+l$ manifold in \mathbb{R}^{m+n}.

* 6. (a) Show that $I=[0,1]$ is a 1-manifold in \mathbb{R}^{1}.
(b) Is $I \times I$ a 2 -manifold in \mathbb{R}^{2} ? Justify your answer.

2 Munkres §24 (pp.208-209)

1. Show that the solid torus is a 3 -manifold, and its boundary is the torus T. (See the exercises of $\S 17$.) Hint: Write the equation for T in cartesian coordinates and apply Theorem 24.4.
2. Prove the following:

Theorem. Let $f: \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n}$ be \mathcal{C}^{r}. Let M be the set of all \mathbf{x} such that $f(\mathbf{x})=\mathbf{0}$. Assume that M is non-empty and that $D F(\mathbf{x})$ has rank n for $\mathbf{x} \in M$. Then M is a k-manifold without boundary in \mathbb{R}^{n+k}. Furthermore, if N is the set of all \mathbf{x} for which

$$
\begin{array}{r}
f_{1}(\mathbf{x})=\cdots=f_{n-1}(\mathbf{x})=0, \\
f_{n}(\mathbf{x}) \geq 0,
\end{array}
$$

and if the matrix

$$
\partial\left(f_{1}, \ldots, f_{n-1}\right) / \partial \mathbf{x}
$$

has rank $n-1$ at each point of N, then N is a $k+1$ manifold, and $\partial N=M$
Hint: Examine the proof of the implicit function theorem.

* 3. Let $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be \mathcal{C}^{r}. Under what conditions can you be sure that the solution set of the system of equations $f(x, y, z)=0, g(x, y, z)=0$ is a smooth curve without singularities (i.e., a 1-manifold without boundary)?

4. Show that the upper hemisphere of $S^{n-1}(a)$, defined by the equation

$$
E_{+}^{n-1}(a)=S^{n-1}(a) \cap \mathbb{H}^{n}
$$

is an $n-1$ manifold. What is its boundary?

* 5. Let $\mathcal{O}(3)$ denote the set of all orthogonal 3×3 matrices, considered as a subspace of \mathbb{R}^{9}.
(a) Define a \mathcal{C}^{∞} function $f: \mathbb{R}^{9} \rightarrow \mathbb{R}^{6}$ such that $\mathcal{O}(3)$ is the solution set of the equation $f(\mathbf{x})=\mathbf{0}$.
(b) Show that $\mathcal{O}(3)$ is a compact 3 -manifold in \mathbb{R}^{9} without boundary.

Hint: Show the rows of $D f(\mathbf{x})$ are independent if $\mathbf{x} \in \mathcal{O}(3)$.
6. Let $\mathcal{O}(n)$ denote the set of all orthogonal $n \times n$ matrices, considered as a subspace of \mathbb{R}^{N}, where $N=n^{2}$. Show $\mathcal{O}(n)$ is a compact manifold without boundary. What is its dimension?

