Problem Set 11 - MAT257

January 25, 2017

Problems marked with $*$ are to be sumbitted for credit.

1 Munkres §17 (p.151)

* 6 . Let S be the tetrahedron in \mathbb{R}^{3} having vertices $(0,0,0),(1,2,3),(0,1,2)$, and ($-1,1,1$). Let $f: S \rightarrow \mathbb{R}$ be given by

$$
f(x, y, z)=x+2 y-z .
$$

Evaluate $\int_{S} f$.
Hint: Use a suitable linear transformation g as a change of variables.
7. Let $0<a<b$. If one takes the circle in the $x z$-plane of radius a centred at the point $(b, 0,0)$, and if one rotates it about the z-axis, one obtains a surface called the torus. If one rotates the corresponding circular disc instead of the circle, one obtains a 3-dimensional solid called the solid torus. Find the volume of this solid torus.

Hint: One can proceed directly, but it is easier to use the cylindrical coordinate transformation

$$
g(r, \theta, z)=(r \cos \theta, r \sin \theta, z) .
$$

The solid torus is the image under g of the set of all (r, θ, z) for which

$$
\begin{aligned}
(r-b)^{2}+x^{2} & \leq a^{2} \\
0 \leq \theta & \leq 2 \pi
\end{aligned}
$$

2 Munkres §20 (p.167)

* 2. Show that if h is an orthogonal transformation, then h carries every orthonormal set to an orthonormal set.

3 Munkres §21 (p.187)

* 3. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the function $h(\mathbf{x})=\lambda \mathbf{x}$. If \mathcal{P} is a k-dimensional parallelopiped in \mathbb{R}^{n}, find the volume of $h(\mathcal{P})$ in terms of the volume of \mathcal{P}.

5. Prove the following:

Theorem. Let W be an n-dimensional vector space with an inner product. Then there exists a uniquie real-valued function $V\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$ of k-tuples of vectors of W such that:
(i) Exchanging $\mathbf{x}_{\mathbf{i}}$ with $\mathbf{x}_{\mathbf{j}}$ does not change the value of V.
(ii) Replacing $\mathbf{x}_{\mathbf{i}}$ by $\mathbf{x}_{\mathbf{i}}+c \mathbf{x}_{\mathbf{j}}$ (for $j \neq i$) does not change the value of V.
(iii) Replacing $\mathbf{x}_{\mathbf{i}}$ by $\lambda \mathbf{x}_{\mathbf{i}}$ multiplies the value of V by $|\lambda|$.
(iv) If the $\mathbf{x}_{\mathbf{i}}$ are orthonormal, then $V\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)=1$.

Proof:
(a) Prove uniqueness. [Hint: Use the Gram-Schmidt process.]
(b) Prove existence. [Hint: If $f: W \rightarrow \mathbb{R}^{n}$ is a linear transformation that carries an orthonormal basis to an orthonormal basis, then f carries the inner product on W to the dot product on \mathbb{R}^{n}.]

4 Munkres §22 (p.193)

1. Let A be open in \mathbb{R}^{k}; let $\alpha: A \rightarrow \mathbb{R}^{n}$ be of class \mathcal{C}^{r}; let $Y=\alpha(A)$. Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry; let $Z=h(Y)$ and let $\beta=h \circ \alpha$. Show that Y_{α} and Z_{β} have the same volume.

* 2. Let A be open in \mathbb{R}^{k}; let $f: A \rightarrow \mathbb{R}$ be of class \mathcal{C}^{r}; let Y be the graph of f in \mathbb{R}^{k+1}, parametrized by the function $\alpha: A \rightarrow \mathbb{R}^{k+1}$ given by $\alpha(\mathbf{x})=(\mathbf{x}, f(\mathbf{x}))$. Express $v\left(Y_{\alpha}\right)$ as an integral.

Hint: In some approaches, it may be possible to simplify the end result using the formula

$$
\operatorname{det}\left(I_{n \times n}+v w^{T}\right)=1+v^{T} w
$$

which holds for vectors $v, w \in \mathbb{R}^{n}$. - DBN

5 "In addition. .."

A. Curves!

Consider a simple curve given by a smooth map $\gamma:[0, T] \rightarrow \mathbb{R}^{n}$, and let $\mathcal{C}:=\operatorname{Im}(\gamma)$.

1. Prove that the arclength $\lambda(\mathcal{C})$ of the curve \mathcal{C} is given by

$$
\lambda(\mathcal{C})=\int_{0}^{T}\|\dot{\gamma}(t)\| d t
$$

where $\|\cdot\|$ is the Euclidian norm on \mathbb{R}^{n} and $\dot{\gamma}=\frac{d}{d t} \gamma$.
2. Consider the length at time $t \in[0, T]$ of γ,

$$
s(t)=\int_{0}^{t}\|\dot{\gamma}(u)\| d u
$$

Let $\hat{\gamma}:[0, \lambda(\mathcal{C})] \rightarrow \mathbb{R}^{n}$ be the reparametrization of \mathcal{C} in terms of arclength (i.e. $\mathcal{C}=\operatorname{Im}(\hat{\gamma})$). Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous in a neighbourhood of \mathcal{C}; express the integral f in terms of the parametrizations γ and $\hat{\gamma}$.
3. Consider the helix $\mathcal{C} \subset \mathbb{R}^{3}$ parametrized as follows:

$$
\gamma(t)=\left(\begin{array}{c}
r \cos t \\
r \sin t \\
2 t
\end{array}\right), \quad t \in[-2 \pi, 2 \pi]
$$

Compute the arclength $\lambda(\mathcal{C})$ and the integral $\int_{\mathcal{C}} f$ where $f(x, y, z)=x y \sin z$.

B. Surfaces!

A parametrization of an orientable surface $\mathcal{S} \subset \mathbb{R}^{3}$ is a \mathcal{C}^{r} map

$$
\begin{aligned}
\sigma & : \mathcal{U} \rightarrow \mathbb{R}^{3} \\
(u, v) & \mapsto(x(u, v), y(u, v), z(u, v))
\end{aligned}
$$

where $\mathcal{U} \subset \mathbb{R}^{2}$ is open.

* 1. Compute the area $\mathcal{A}(\mathcal{S})$ of the surface $\mathcal{S} \subset \mathbb{R}^{3}$ given by the parametrization

$$
\sigma(u, v)=(u \cos v, u \sin v, v)
$$

$\forall(u, v) \in(0,1) \times(0, \pi)$.
2. Let \mathcal{S} be the part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying inside the cylinder $x^{2}+y^{2}=b^{2}$ where $0<b<a$. Compute the surface area $\mathcal{A}(\mathcal{S})$.

