Problem Set 9 — MAT257

November 30, 2016

Problems marked with * are to be sumbitted for credit.

1 Munkres §13 (p.111)

- 1. Let $f, g: S \to \mathbb{R}$. Assume f and g are integrable over S.
 - (a) Show that if f and g agree except on a set of measure zero, then $\int_S f = \int_S g$.
 - (b) Show that if $f(\mathbf{x}) \leq g(\mathbf{x})$ for $\mathbf{x} \in S$ and $\int_S f = \int_S g$, then f and g agree except on a set of measure zero.
- 2. Let A be a rectangle in \mathbb{R}^k ; let B be a rectangle in \mathbb{R}^n ; let $Q = A \times B$. Let $f : Q \to \mathbb{R}$ be a bounded function. Show that if $\int_Q f$ exists, then

$$\int_{\mathbf{y}\in B} f(\mathbf{x}, \mathbf{y})$$

exists for $\mathbf{x} \in A \setminus D$, where D is a set of measure zero in \mathbb{R}^k .

- 3. Complete the proof of Corollary 13.4.
- 4. Let S_1 and S_2 be bounded sets in \mathbb{R}^n ; let $f: S_1 \cap S_2 \to \mathbb{R}$ be a bounded function. Show that if f is integrable over S_1 and S_2 , then f is integrable over $S_1 \setminus S_2$, and

$$\int_{S1\backslash S_2} f = \int_{S_1} f - \int_{S1\cap S_2} f.$$

- 5. Let S be a bounded set in \mathbb{R}^n ; let $f: S \to \mathbb{R}$ be a bounded continuous function; let A = IntS. Give an example where $\int_A f$ exists and $\int_S f$ does not.
- 6. Show that **Theorem 13.6** holds without the hypothesis that f is continuous on S.
- 7. Prove the following:

Theorem. Let S be a bounded set in \mathbb{R}^n ; let $f: S \to \mathbb{R}$ be a bounded function. Let D be the set of points of S at which f fails to be continuous. Let E be the set of points of BdS at which the condition

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = 0$$

fails to hold. Then $\int_S f$ exists if and only if D and E have measure zero.

Proof.

- (a) Show that f_S is continuous at each point $\mathbf{x_0} \notin D \cup E$.
- (b) Let B be the set of isolated points of S; then $B \subset E$ because the limit cannot be defined if $\mathbf{x_0}$ is not a limit point of S. Show that if f_S is continuous at $\mathbf{x_0}$, then $\mathbf{x_0} \notin D \cup (E \setminus B)$.
- (c) Show that B is countable.
- (d) Complete the proof.

2 Munkres §14 (pp.120-121)

- 1. Let S be a bounded set in \mathbb{R}^n that is the union of the countable collection of rectifiable sets S_1, S_2, \ldots
 - (a) Show that $S_1 \cup \cdots \cup S_n$ is rectifiable.
 - (b) Give an example showing that S need not be rectifiable.
- 2. Show that if S_1 and S_2 are rectifiable, so is $S_1 \setminus S_2$, and

$$v(S_1 \setminus S_2) = v(s_1) - v(S_1 \cap S_2).$$

- 3. Show that if A is a nonempty, rectifiable open set in \mathbb{R}^n , then v(A) > 0.
- * 4. Give an example of a bounded set of measure zero that is rectifiable, and an example of a bounded set of measure zero that is not rectifiable.
 - 5. Find a bounded closed set in \mathbb{R} that is not rectifiable.
 - 6. Let A be a bounded open set in \mathbb{R}^n ; let $f: \mathbb{R}^n \to \mathbb{R}$ be a bounded continuous function. Give an example of where $\int_{\overline{A}} f$ exists but $\int_A f$ does not.
 - 7. Let S be a bounded set in \mathbb{R}^n .
 - (a) Show that if S is rectifiable, then so is the set \overline{S} , and $v(S) = v(\overline{S})$.
 - (b) Give an example where \overline{S} and IntS are rectifiable, but S is not.
 - 8. Let A and B be rectangles in \mathbb{R}^k and \mathbb{R}^n , respectively. Let S be a set contained in $A \times B$. For each $\mathbf{y} \in B$, let

$$S_{\mathbf{y}} = \{ \mathbf{x} : \mathbf{x} \in A \text{ and } (\mathbf{x}, \mathbf{y}) \in S \}.$$

We call $S_{\mathbf{y}}$ a **cross-section** of S. Show that if S is rectifiable, and if $S_{\mathbf{y}}$ is rectifiable for each $\mathbf{y} \in B$, then

$$v(S) = \int_{\mathbf{y} \in B} v(S_{\mathbf{y}}).$$

3 Munkres §15 (pp.132-133)

* 4. Let $f(x,y) = 1/(y+1)^2$. Let A and B be the open sets

$$A = \{(x, y) : x > 0 \text{ and } x < y < 2x\},\$$

 $B = \{(x, y) : x > 0 \text{ and } x^2 < y < 2x^2\},\$

of \mathbb{R}^2 . Show that $\int_A f$ does not exist. Show that $\int_B f$ does exist and compute it.

- * 8. Let A be open in \mathbb{R}^n . We say $f: A \to \mathbb{R}$ is **locally bounded** on A if each $\mathbf{x} \in A$ has a neighbourhood on which f is bounded. Let $\mathcal{F}(A)$ be the set of all functions $f: A \to \mathbb{R}$ that are locally bounded on A and continuous on A except on a set of measure zero.
 - (a) Show that if f is continuous on A, then $f \in \mathcal{F}(A)$.
 - (b) Show that if f is in $\mathcal{F}(A)$, then f is bounded on each compact subset of A and the definition of the extended integral $\int_A f$ goes through without change.
 - (c) Show that Theorem 15.3 holds for functions f in $\mathcal{F}(A)$.
 - (d) Show that Theorem 15.4 holds if the word "continuous" in the hypothesis is replaced by "continuous except on a set of measure zero."

4 "In addition..."

 \ast A. Compute the volume of the "2D ice cream cone".

$$C = \{(x,y): |x| \le y \le 1 + \sqrt{1 - x^2}\}.$$

* B. Compute the volume of the "n-dimensional simplex".