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LOUIS-PHILIPPE THIBAULT

Problem 1

Let G be a group of order 56. We have that 56 = 23 · 7. Then, using Sylow’s theorem, we
have that the only possibilities for the number of Sylow-p subgroups are:

(1) n2(G) = 1 or 7;
(2) n7(G) = 1 or 8.

We will show that the case n2(G) = 7, n7(G) = 8 is impossible. Two different Sylow-7 sub-
groups intersect only in the identity, so none of the elements of order 7 in a given Sylow-7
subgroup is in another Sylow-7 subgroup. Also, all the Sylow-7 subgroups are conjugate, by
Sylow’s theorem, hence isomorphic. Then, if n7(G) = 8, we have that G has at least 8 · 6 = 48
elements of order 7. The remaining elements must form a Sylow-2 subgroup. So there are not
enough elements of order 2 to form seven Sylow-2 subgroup, which is a contradiction.

We have shown that n2(G) = 1 or n7(G) = 1. Suppose without lost of generality that
n2(G) = 1. Then there is a unique Sylow-2 subgroup P2. By the Sylow’s theorem, every
conjugate of P2 is a Sylow-2 subgroups. So P2 is equal to its conjugates. Hence P2 is normal
in G.

Problem 2

Part 1. We have that G = (Z/5)5 o S5. As a set G is the direct product of (Z/5)5 and S5,
so |G| = |(Z/5)|5|S5| = 56 · 23 · 3 = 375000.

Part 2. A Sylow-5 subgroup of G has order 56. We claim that P = (Z/5)5 o 〈(1, 2, 3, 4, 5)〉 is
a Sylow-5 subgroup of G. In fact, |P | = 56. Also, it is a subgroup of G, because it is closed
under multiplication. Indeed, the multiplication is clearly closed in the first variable, since
we have all of (Z/5)5. It is also closed in the second variable, because 〈(1, 2, 3, 4, 5)〉 is a sub-
group of S5 and the multiplication in the second variable is the same as the multiplication in S5.

We claim that there are six Sylow-5 subgroups of G. Indeed, all Sylow-5 subgroups are con-
jugate of P . Conjugating in the first variable does not change the group (Z/5)5. So, the number
of Sylow-5 subgroups of G is equal to the number of groups conjugated to 〈(1, 2, 3, 4, 5)〉 ∼= C5.
Every conjugate P ′ of 〈(1, 2, 3, 4, 5)〉 is such that |P ′| = |〈(1, 2, 3, 4, 5)〉| = 5. Also, there are
4! = 24 elements of order 5 in S5. Since each conjugate in S5 preserves the cycle type, we
have that every conjugate of P contains four 5-cycles and the identity. So there is 24/4 = 6
groups conjugated to 〈(1, 2, 3, 4, 5)〉. Hence n5(G) = 6.

Problem 3

If Q was the semi-direct product of two of its proper subgroups, it would have to be of a
group of order 4 with a group of order 2. The only group of order 2 is C2 and the two only
groups of order 4 are C4 and C2 × C2 = V4. But V4 is not a subgroup of Q, because V4 has
three elements of order 2 and Q has only one element of order 2. So if Q is a semi-direct
product, then there is only two possibilities, namely
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(1) Q = C4 o C2;
(2) Q = C2 o C4.

We will show that all of these possibilities are impossible. First of all, the only subgroup of
order 2 in Q is {+1,−1}. Moreover,

Q/{+1,−1} ∼= V4.

Indeed, Q/{+1,−1} = {1̄, ī, j̄, k̄}. Since ī, j̄, k̄ all have order 2, Q/{+1,−1} ∼= V4. So case 2
is impossible, because whenever a group G = N oH, then G/N ∼= H.

We now analyze case 1. Aut(C4) ∼= C2. We now imagine C2 = {0, 1} as the additive cyclic
group. So there is only one non-trivial homomorphism φ : C2 → Aut(C4), namely the one
sending 0 to the identity automorphism and 1 to φ1, where

φ1(0) = 0, φ1(1) = 3, φ1(2) = 2, φ1(3) = 1.

Then, C4 o C2 = {(0, 1), (1, 1), (2, 1), (3, 1), (0, 0), (1, 0), (2, 0), (3, 0)} as a set. Clearly, the
identity has to be (0, 0). We have that (0, 1)(0, 1) = (0, 0), under the operation of the semi-
direct product. Also, (2, 1)(2, 1) = (0, 0). So there is two elements of order 2 in C4 o C2, but
Q has only one element of order 2. If φ is trivial, then C4oC2 = C4×C2. But (0, 1) and (2, 1)
have order 2 in C4 × C2, whereas Q has only one element of order 2. So case 1 is impossible.

So, none of the possible semi-direct products of order 8 is isomorphic to Q.

Problem 4

Suppose |H| = pα for a given α. Let H acts on G/H by left multiplication. Then,
Orb(gH) = {hgH|h ∈ H}. We have that

|Orb(gH)| = 1⇔ hgH = gH, ∀h ∈ H ⇔ g−1Hg ⊂ H

⇔ g ∈ NG(H)⇔ gH ∈ NG(H)/H.

Let giH be representatives of the orbits that contain more than one element. Then,

|G/H| = |NG(H)/H|+
∑
i

|Orb(giH)|.

Now we have that for all i, |Orb(giH)| > 1 and |Orb(giH)| | |H| = pα. So |Orb(giH)| ≡
0 mod p for all i. Then

|G/H| ≡ |NG(H)/H| mod p.

Problem 5

We will start by part 2. We have that (−a)(a) = −(a2). Indeed,

(−a)(a) + (a)(a) = (−a+ a)(a) = 0,

where we have used the distribution property. Then,

(−a)(−a) + (−(a2)) = (−a)(−a) + (−a)(a) = (−a)(−a+ a) = 0.

So (−a)2 = a2, where we have used the fact that −(−(a2)) = a2. For part 1, we just need to
take a = 1.
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Problem 6

Part 1. Let D be a finite integral domain. By definition, an integral domain is commutative,
so we only need to check that every nonzero element of D has a multiplicative inverse. Let
a 6= 0 be an element of D. Then we have that

{ax|x ∈ D} = D. (∗)
In fact, we have that whenever x 6= y, ax 6= ay, because D is a domain. Since D is finite, we
have |{ax|x ∈ D}| = |D|, and this implies the result (∗). In particular, there exists an x such
that ax = 1. So a has an inverse. Since a was arbitrary, we have that every element of D has
an inverse. Hence D is a field.

Part 2. We have that an ideal P is prime in R if and only if R/P is an integral domain.
Since R/P is a finite integral domain, it is a field (see part 1). We have proved in class that
given a ring S and an ideal I, the quotient S/I is a field if and only if I is maximal. Then,
using this theorem, P is maximal.

Problem 7

Part 1. We first show that for every x ∈ R, 2x = 0. Indeed,

2x = x+ x = (x+ x)2 = x2 + 2x2 + x2 = x+ 2x+ x = 4x.

Subtracting by 2x both side, we have 2x = 0. In particular, it means that x = −x.

Using this property, we prove the main result:

x+ y = (x+ y)2 = x2 + xy + yx+ y2 = x+ xy + yx+ y.

Subtracting by x and y both side, we have xy + yx = 0, so xy = −yx = yx. Since x, y were
arbitrary, we conclude that R is commutative.

Part 2. Z/2 is clearly a Boolean ring. It is also a field, so it is an integral domain. Since Z/2
is the only ring up to isomorphism of order 2, suppose we have a Boolean ring R such that
|R| > 2. Take a 6= 0, 1 in R. Then, a(a− 1) = a2 − a = 0, but a 6= 0 and a− 1 6= 0, because
a 6= 1. So R is not an integral domain.

Problem 8

Part 1. By the Bolzano-Weiestrass theorem, every bounded sequence has a converging sub-
sequence. So, intuitively, we want to define a map φ : S → R such that φ sends a sequence
to the limit of one of its converging subsequence. We want to find a way to choose which
subsequence to take. We will do this by using the fact that we want J to be in the kernel of
φ.

Define Uε,(an) = {i ∈ N||ai| < ε , ai ∈ (an)}, and UJ = {Uε,(an)|ε > 0, (an) ∈ J}. We claim
that the map φ : S → R, (an) 7→ x, where x is chosen such that for all ε > 0,

{i ∈ N||ai − x| < ε, ai ∈ (an)} ∈ UJ
(1) is well-defined, that is, x exists and is unique;
(2) is a surjective homomorphism;
(3) has kerφ = J .

These three properties will complete the proof. Indeed, by the first isomorphism theorem,
we will have S/J ∼= R.

We start by stating four properties of J and UJ .
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a. We first notice that J cannot contain a sequence with a finite number of elements equal to
0 (or no element equal to 0), unless this sequence contains a subsequence that converges to 0.
Otherwise, if (an) ∈ J has only a finite number of elements equal to 0 and no subsequences
converging to 0, then J = S. Indeed, we can take (dn) ∈ I such that (ãn) = (an) + (dn) ∈ J
do not contain any zero, nor subsequences converging to 0. Then, for every (bn) ∈ S, there
exists a (cn) ∈ S such that (bn) = (ãn)(cn). The sequence (cn) can be chosen to be bounded
because (ãn) has no subsequence converging to 0. Thus, (bn) ∈ J . Since (bn) was arbitrary,
J = S. In particular, ∅ 6∈ UJ and UJ contains no finite sets.

b. If Uε,(an) ∈ UJ and Uε,(an) ⊂ V , then V ∈ UJ . Indeed, V is of the form V = Uε′,(ãn),
where ε′ > ε and (ãn) ∈ J is such that Uε,(an) = Uε,(ãn). Note that every (ãn) having the
property Uε,(an) = Uε,(ãn) are in J , as it suffices to obtain it from a multiplication of (an) by
an appropriate sequence in S.

c. If (an), (bn) ∈ J , Uε,(an), Uε′,(bn) ∈ Uj , then Uε,(an)∩Uε′,(bn) ∈ UJ . Indeed, Uε,(an)∩Uε′,(bn) ⊃
Uε+ε′,(an)+(bn). Then the result follows from b.

d. If U 6∈ UJ , then U c ∈ UJ . In fact, otherwise let (bn) be the sequence such that bi = 0
for every i ∈ U c. Note that (bn) have infinitely many 0, because otherwise U ∈ UI ⊂ UJ .
Then, J [(bn)], the smallest ideal containing both J and (bn) is not all of S. This contradicts
the maximality of J . Indeed, if (sn) ∈ S has sufficiently large entries at every index, it is
clearly impossible to multiply (bn) by a sequence of S to obtain (sn), since (bn) has infinitely
many 0. Moreover, if (bn) + (cn) = (sn), with (cn) ∈ J , then there exists ε > 0 such that
Uε,(cn) ⊂ U . In fact, since (cn) ∈ J , it has infinitely many small values. Those small values
have to be at different indices that those of (bn), since (sn) has large values. So, by property b,
U ∈ UJ . Since this is impossible, it implies that (cn) cannot be in J , so (sn) 6∈ J [(bn)] implies
J [(bn)] 6= S.

We now prove the uniqueness. Suppose x1 and x2 are good candidate for φ(an). Then there
exists ε > 0 such that

{i ∈ N||ai − x1| < ε} ∈ UJ , {i ∈ N||ai − x2| < ε} ∈ UJ
are disjoint. But, by properties a and c, this is impossible.

We want to prove the existence. Suppose that there exists (an) such that for all convergent
subsequences (ak), there exists ε(ak) > 0 such that

Ũε(ak),(ak) = {i ∈ N||ai − x(ak)| < ε(ak)} 6∈ UJ ,

where x(ak) is the limit of (ak). Then, since the complement Ũ cε(ak),(ak) of every Ũε(ak),(ak)

is in UJ (property d), then ∩Ũ cε(ak),(ak) ∈ UJ (property c) is finite, where the intersection is

taken over all the converging subsequences of (an). This contradicts property a.

We now want to prove that φ is a surjective homomorphism. First, φ is clearly surjective,
as (φ((r)∞i=0) = r for all r in R. If φ(an) = x1 and φ(bn) = x2, then (an) − (x1) ∈ J and
(bn)− (x2) ∈ J . So ((an) + (bn)− ((x1) + (x2))) ∈ J , where we view x1, x2 as sequences (x1),
(x2), respectively. Thus, for all ε > 0,

{i ∈ N||ai + bi − (x1 + x2)| < ε} ∈ UJ .

Hence, φ(an + bn) = x1 + x2. Also, (x2)((an) − (x1)) ∈ J , because J is an ideal. Then,
((an)((bn) − (x2)) + (x2)((an) − (x1))) = ((an)(bn) − (x1)(x2)) ∈ J , so φ(anbn) = x1x2 as
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before. So φ is a homomorphism.

Finally, kerφ = J . This is clear, because J ⊂ kerφ. Then, by maximality of J , J = kerφ.

So S/J ∼= R.

Part 2. The last two parts are due to the fact that LimJ is a homomorphism. For the first
part, let LimJ(an) = x. Then, ((an)− (x)) ∈ J . So, (c)((an)− (x)) ∈ J , because J is an ideal.
Then, as in part 1, for all ε > 0,

{i ∈ N||cai − cx| < ε} ∈ UJ .
So, Limj(can) = cx.

Part 3. First of all, notice that all convergent sequences having limit 0 are in J . This is due
to the fact that if (an)→ 0, then for all ε > 0, there exists N such that for all n > N , |an| < ε.
Then, take (bn) ∈ I such that bn = 0 for all n such that |an| < ε. We have that

{i ∈ N||ai| < ε} = Uε,(bn) ∈ UJ .
Since ε > 0 was arbirary, LimJ(an) = 0. So, (an) ∈ J . Now take a convergent sequence
(cn) → x. Then, ((cn) − (x)) is a sequence converging to 0. So ((cn) − (x)) ∈ J . Thus,
LimJ((cn)− (x)) = 0. Hence, LimJ(cn) = LimJ(x) = x.

Part 4. The answer is no. Indeed, take the sequences ((−1)n) and ((−1)n+1). Then, if
LimJ(((−1)n)) = LimJ(((−1)n+1)), we have LimJ(((−1)n)) − ((−1)n+1)) = 0. But, clearly
LimJ(((−1)n))− ((−1)n+1)) = LimJ(2(−1)n) = 2 or −2, depending on J .
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