MAT240: Abstract Linear Algebra Lecture:

Determinants:

1. Applications: Mention two, prove one, use none.
2. Formulas: discuss just one.
3. Basic Properties. Our core subject.

Det: $\quad M_{n x n}(F) \rightarrow F$
Use 1:

$$
\operatorname{det}\left(\begin{array}{c}
---r_{1}--- \\
\vdots \\
---r_{n}----
\end{array}\right)=\operatorname{vol}\left(\text { paralleopiped spanned by } r_{1} \ldots r_{n}\right)
$$

Use 2:

$$
\operatorname{det}(A) \neq 0 \quad \text { iff } \quad A^{-1} \exists
$$

Definition:

$$
\begin{aligned}
& \left|\left(a_{11}\right)\right|:=a_{11} \\
& |A|=\left|\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\right| \equiv \sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|\widetilde{A_{i j}}\right|
\end{aligned}
$$

in general, $\widetilde{A_{i j}}$ is the matrix obtained from A by removing the $i^{\text {th }}$ row and $j^{\text {th }}$ column.
Eg. $\left|\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\right|=a d-b c$
Eg. $\left|\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\right|=(-1)^{1+1} * a_{11}\left|\left(a_{22}\right)\right|=a_{11} a_{22}-a_{12} a_{21}$
Eg. $\left|\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\right|=1 * 4-2 * 3=-2$
Eg. $\left|\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)\right|=1\left|\left(\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right)\right|-2\left|\left(\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right)\right|+3\left|\left(\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right)\right|=1(-3)-2(-6)+$
$3(-3)=0$
\rightarrow The above matrix is not invertible.\therefore rank <3

Eg. $\left|\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)\right|=0-1\left|\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right|+1\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|=-1(-1)+1(1)=2 \rightarrow$ this matrix is invertible.

Theorem: The following basic properties hold:
0. $\operatorname{det}\left(I_{n}\right)=I$

1. $\operatorname{det}\left(E_{i j}^{1} A\right)=-\operatorname{det}(A) \rightarrow \operatorname{det}\left(E_{i j}^{1}\right)=-1$
"flipping two rows in A , flips sign of $\operatorname{det} \mathrm{A}$."
Eg. $\operatorname{det}\left(\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right)=3 * 2-4 * 1=2$
2. $\operatorname{det}\left(E_{i c}^{2} A\right)=c * \operatorname{det}(A) \rightarrow \operatorname{det}\left(E_{1 c}^{2}\right)=c$, even if $c=0$
"multiplying a row by c multiplies det A by 7."
Eg. $\operatorname{det}\left(\begin{array}{cc}1 & 2 \\ 21 & 28\end{array}\right)=28-42=-14=7(-2)$
Eg. $\operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 3 & 4\end{array}\right)=0 * 4-0 * 3=0$
Moral: det of a matrix with a row of 0 's is 0 .
3. $\operatorname{det}\left|E_{1 j c}^{3} A\right|=\operatorname{det} A \rightarrow \operatorname{det}\left(E_{i j c}^{3}\right)=1$
"Adding a multiple of one row to another row to another does not change det A".
E.g $\left|\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)\right| \xrightarrow{r_{2}+=2 r_{1}}\left|\left(\begin{array}{ll}1 & 2 \\ 5 & 8\end{array}\right)\right|=-2$

Claim: Using this we can compute $\operatorname{det}(\mathrm{A})$ for any A .
Method: Row reduce A to B which is RREF keeping track of the changes to det.
If B is RREF:

$$
\operatorname{det} B=\left\{\begin{array}{c}
1 \text { if } B=\left(\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right) \\
0 \text { if } B=\left(\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 \\
0 & \cdots & 0
\end{array}\right)
\end{array}\right\}
$$

