MAT1100

Algebra I

Assignment 1

Contents

1.	Problem 1	1
2.	Question 2	2
3.	Question 3	2
4.	Question 4	3

1

If g is an element of a group G, the order |g| of g is the least positive number n such that $g^n = 1$. If $x, y \in G$ show that |xy| = |yx|.

Lemma 1. The following are some important and easily verifiable facts that we will use in our proof.

- (1) If $g \in G$ not identity and $g^n = e$ then $|g| \mid n$.
- (2) For every $g, h \in G$ we have that $(h^{-1}gh)^{n} = h^{-1}g^{n}h$.
- (3) For every $g, h \in G$ we have that $|g| = |h^{-1}gh|$. That is, conjugation preserves order.
- *Proof.* (1) Assume that $g \in G$ and that $g^n = e$. Since g is not identity, we know that n > 1. Since n is an integer, we know $\exists q, r \in \mathbb{Z}$ such that n = q|g| + r where $0 \le r < |g|$. But then

$$g^n = g^{|g|q+r} = (g^{|g|})^q g^r = g^r = e.$$

This implies that $g^r = e$. However, since |g| is the minimal such integer and r < |g| we conclude that r = 0. Thus n = |g|q, so $|g| \mid n$ as required.

(2) Let $g, h \in G$. We will proceed by induction. Clearly $(h^{-1}gh)^1 = h^{-1}g^1h$ so the base case is satisfies. Assume then that $(h^{-1}gh)^k = h^{-1}g^kh$. Now

$$(h^{-1}gh)^{k+1} = (h^{-1}gh)^k(h^{-1}gh)$$
 by induction hypothesis
$$= h^{-1}g^kgh = h^{-1}g^{k+1}h$$

and so $(h^{-1}gh)^{k+1} = h^{-1}g^{k+1}h$ as we required and the result follows.

(3) To show that $|g| = |h^{-1}gh|$ we will show that the numbers divide one another. Indeed, note that

$$(h^{-1}gh)^{|g|} = h^{-1}g^{|g|}h = h^{-1}h = e$$

and so by Property 1 we know that $|h^{-1}gh| |g|$. Conversely, we know that $(h^{-1}gh)^{|h^{-1}gh|} = e$ so

$$(h^{-1}gh)^{|h^{-1}gh|}=e$$
 by Property 2
$$g^{|h^{-1}gh|}=hh^{-1}$$
 by multiplying by
$$h \text{ and } h^{-1}$$

$$q^{|h^{-1}gh|}=e$$

and so we conclude that $|g| \mid |h^{-1}gh|$. Both divisibility criteria imply that $|g| = |h^{-1}gh|$ as required.

Now fix $g, h \in G$, and notice that we can write $gh = ghgg^{-1} = g(hg)g^{-1}$. By Property 3 above, we know that conjugation does not affect the order of an element, hence

$$|gh| = |g(hg)g^{-1}| = |hg|$$

which is precisely what we wanted to show.

Let G be a group. Show that the function $\phi: G \to G, g \mapsto g^2$ is a group homomorphism if and only if G is abelian.

- (\Rightarrow) Assume that $\phi: G \to G$ is group homomorphism and let $g,h \in G$. By definition of the mapping, we know that $\phi(gh) = (gh)^2 = ghgh$. By assumption, ϕ is a homomorphism and so $\phi(gh) = \phi(g)\phi(h) = g^2h^2 = gghh$. Hence we have that ghgh = gghh. Multiplying by g^{-1} on the left and h^{-1} on the right, we get gh = hg. Since g,h were chosen arbitrarily, this holds for all elements of the group, hence the group is Abelian.
 - (\Leftarrow) Assume that G is an abelian group. Then

$$\phi(gh) = (gh)^2$$

= $ghgh = gghh$ since G is abelian
= $g^2h^2 = \phi(g)\phi(h)$

On the other hand, $\phi(g^{-1}) = (g^{-1})^2 = (g^2)^{-1} = \phi(g)^{-1}$ hence ϕ is a homomorphism of groups as required.

3. Question 3

Let G be a group. For $a, b \in G$, the commutator [a, b] of a and b is $[a, b] = aba^{-1}b^{-1}$. Let G' be the subgroup of G generated by all commutators of elements of G. Show that G' is normal in G, that G/G' is Abelian, and that any morphism from G into an Abelian group factors through G/G'.

We make the following claim:

Lemma 2. If G is a group and $H \leq G$, then if $\forall \phi_g \in \text{Inn}(G)$ we have that $\phi(H) \subseteq H$ then $H \triangleleft G$.

Proof. Let G be a group and $H \leq G$ which is preserved under all inner-automorphisms. Let $g \in G, h \in H$ be arbitrary fixed elements. If we denote by $\phi_g \in \text{Inn}(G)$ the inner automorphism $\phi_g(x) = gxg^{-1}$ then $ghg^{-1} = \phi_g(h) \in H$ by hypothesis. Hence $H \triangleleft G$ as required.

Lemma 3. If $\phi: G \to H$ is an homomorphism of G, then $\phi([g,h]) = [\phi(g), \phi(h)]$ and so $\phi(G') \subseteq H'$.

Proof. Fix $g, h \in G$. Then

$$\phi([g,h]) = \phi(ghg^{-1}h^{-1}) = \phi(g)\phi(h)\phi(g^{-1})\phi(h^{-1})$$
$$= \phi(g)\phi(h)\phi(g)^{-1}\phi(h)^{-1}$$
$$= [\phi(g), \phi(h)]$$

Lemma 2 and Lemma 3 imply $G' \triangleleft G$. Indeed, we notice by Lemma 3 that $\phi(G') \subseteq G'$ for every automorphism of G, and so in particular this holds for every inner-automorphism. We conclude normality by Lemma 2.

To see that G/G' is abelian, consider the projection homomorphism $\pi: G \to G/G'$. Let $\bar{g}, \bar{h} \in G/G'$ be distinct elements of the quotient group, and let $g, h \in G$ be such that $\pi(g) = \bar{g}, \pi(h) = \bar{h}$.

Now g, h must be distinct elements since otherwise $\bar{g} = \bar{h}$. Now $[g, h] \in G'$ so $\pi([g, h]) = e_{G/G'}$. However, Lemma 3 implies that

$$\phi([g,h]) = [\overline{g},\overline{h}] = \overline{g}\overline{h}\overline{g}^{-1}\overline{h}^{-1} = e_{G/G'}$$

and so we conclude that $\overline{g}\overline{h} = \overline{h}\overline{g}$. Since $\overline{g}, \overline{h}$ were chosen arbitrarily, we conclude that all elements of G/G' commute and hence the quotient group is abelian.

Finally, we want to show that any homomorphism from G to an abelian group H factors through G/G'. Let $\phi: G \to H$ be such a homomorphism, and notice that $G' \subseteq \ker \phi$. Indeed, let $g \in G'$

and write
$$g = [g_1, h_1][g_2, h_2] \cdots [g_n, h_n] = \prod_{i=1}^n [g_i, h_i]$$
 for $g_i, h_i \in G$. Now

$$\phi(g) = \phi\left(\prod_{i=1}^{n} [g_i, h_i]\right)$$

$$= \prod_{i=1}^{n} \phi\left([g_i, h_i]\right) \qquad \text{since } \phi \text{ is a homomorphism}$$

$$= \prod_{i=1}^{n} [\phi(g_i), \phi(h_i)] \qquad \text{from Lemma 3}$$

$$= \prod_{i=1}^{n} e_H = e_H \qquad \text{since } H \text{ is abelian}$$

where in the last line, we note that the commutator in an abelian group is always identity. So $G' \subseteq \ker \phi$. By the Lattice Isomorphism theorem, we then know that $G/\ker \alpha \subseteq G/G'$ and so denote the inclusion map $\iota : G/\ker \alpha \hookrightarrow G/G'$ and write

$$G \xrightarrow{\pi} G/G' \xrightarrow{\iota} G/\ker \alpha \xrightarrow{\cong} \operatorname{im}(\alpha) \hookrightarrow H$$

where $\pi: G \to G/G'$ is the projection map and \cong denotes the use of the first isomorphism theorem. Hence ϕ factors through G/G' as above.

4. Question 4

Let G be a group. An automorphism of G is an invertible group morphism $G \to G$. An inner automorphism is an automorphism of G given by conjugation by some specific element gof G, so $x \mapsto x^g$. Prove that the inner automorphisms of G form a normal subgroup of the group of all automorphisms of G.

Let $\phi \in \operatorname{Aut}(G)$ and $\varphi_g \in \operatorname{Inn}(G)$ given by $\varphi_g : x \to gxg^{-1}$. Now we want to consider the automorphism given by $\phi \circ \varphi_g \circ \phi^{-1}$ and show that this is an element of $\operatorname{Inn}(G)$. Indeed, we claim that $\phi \circ \varphi_g \circ \phi^{-1} = \varphi_{\phi(g)}$ where $\varphi_{\phi(g)}(x) = x^{\phi(g)}$. To see this, we note that an automorphism of G

⁴ is determined entirely by its action on elements of G. Let $h \in G$ be arbitrary, and notice that

$$\begin{split} \phi \circ \varphi_g \circ \phi^{-1}(g) &= \phi \left(\varphi_g \left(\phi^{-1}(h) \right) \right) \\ &= \phi \left(g \phi^{-1}(h) g^{-1} \right) & \text{by definition of inner automorphism} \\ &= \phi(g) \phi \left(\phi^{-1}(h) \right) \phi(g^{-1}) & \text{since } \phi \text{ is a homomorphism} \\ &= [\phi(g)] h[\phi(g)]^{-1} \\ &= \varphi_{\phi(g)}(h). \end{split}$$

Hence as claimed, $\phi \circ \varphi_g \circ \phi^{-1} = \varphi_{\phi(g)} \in \text{Inn}(G)$ so $\text{Inn}(G) \triangleleft \text{Aut}(G)$ as required.