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11. Problem 1

If g is an element of a group G, the order |g| of g is the least positive number n such
that gn = 1. If x, y ∈ G show that |xy| = |yx|.

Lemma 1. The following are some important and easily verifiable facts that we will use in our
proof.

(1) If g ∈ G not identity and gn = e then |g|
∣∣∣n.

(2) For every g, h ∈ G we have that (h−1gh)n = h−1gnh.
(3) For every g, h ∈ G we have that |g| = |h−1gh|. That is, conjugation preserves order.

Proof. (1) Assume that g ∈ G and that gn = e. Since g is not identity, we know that n > 1.
Since n is an integer, we know ∃q, r ∈ Z such that n = q|g|+ r where 0 ≤ r < |g|. But then

gn = g|g|q+r = (g|g|)qgr = gr = e.

This implies that gr = e. However, since |g| is the minimal such integer and r < |g| we

conclude that r = 0. Thus n = |g|q, so |g|
∣∣∣n as required.

(2) Let g, h ∈ G. We will proceed by induction. Clearly (h−1gh)1 = h−1g1h so the base case is
satisfies. Assume then that (h−1gh)k = h−1gkh. Now

(h−1gh)k+1 = (h−1gh)k(h−1gh)

= (h−1gkh)(h−1gh) by induction hypothesis

= h−1gkgh = h−1gk+1h

and so (h−1gh)k+1 = h−1gk+1h as we required and the result follows.
(3) To show that |g| = |h−1gh| we will show that the numbers divide one another. Indeed, note

that
(h−1gh)|g| = h−1g|g|h = h−1h = e

and so by Property 1 we know that |h−1gh|
∣∣∣ |g|. Conversely, we know that (h−1gh)|h

−1gh| =
e so

(h−1gh)|h
−1gh| = e

h−1g|h
−1gh|h = e by Property 2

g|h
−1gh| = hh−1

by multiplying by
h and h−1

g|h
−1gh| = e

and so we conclude that |g|
∣∣∣ |h−1gh|. Both divisibility criteria imply that |g| = |h−1gh| as

required.

�

Now fix g, h ∈ G, and notice that we can write gh = ghgg−1 = g(hg)g−1. By Property 3 above,
we know that conjugation does not affect the order of an element, hence

|gh| = |g(hg)g−1| = |hg|
which is precisely what we wanted to show.



2 2. Question 2

Let G be a group. Show that the function φ : G→ G, g 7→ g2 is a group homomorphism
if and only if G is abelian.

(⇒) Assume that φ : G → G is group homomorphism and let g, h ∈ G. By definition of the
mapping, we know that φ(gh) = (gh)2 = ghgh. By assumption, φ is a homomorphism and so
φ(gh) = φ(g)φ(h) = g2h2 = gghh. Hence we have that ghgh = gghh. Multiplying by g−1 on the
left and h−1 on the right, we get gh = hg. Since g, h were chosen arbitrarily, this holds for all
elements of the group, hence the group is Abelian.

(⇐) Assume that G is an abelian group. Then

φ(gh) = (gh)2

= ghgh == gghh since G is abelian

= g2h2 = φ(g)φ(h)

hence φ is a homomorphism of groups as required.

3. Question 3

Let G be a group. For a, b ∈ G, the commutator [a, b] of a and b is [a, b] = aba−1b−1.
Let G′ be the subgroup of G generated by all commutators of elements of G. Show
that G′ is normal in G, that G/G′ is Abelian, and that any morphism from G into an
Abelian group factors through G/G′.

We make the following claim:

Lemma 2. If G is a group and H ≤ G, then if ∀φg ∈ Inn(G) we have that φ(H) ⊆ H then H /G.

Proof. Let G be a group and H ≤ G which is preserved under all inner-automorphisms. Let
g ∈ G, h ∈ H be arbitrary fixed elements. If we denote by φg ∈ Inn(G) the inner automorphism
φg(x) = gxg−1 then ghg−1 = φg(h) ∈ H by hypothesis. Hence H / G as required. �

Lemma 3. If φ : G → H is an homomorphism of G, then φ([g, h]) = [φ(g), φ(h)] and so φ(G′) ⊆
H ′.

Proof. Fix g, h ∈ G. Then

φ([g, h]) = φ(ghg−1h−1) = φ(g)φ(h)φ(g−1)φ(h−1)

= φ(g)φ(h)φ(g)−1φ(h)−1

= [φ(g), φ(h)]

�

Lemma 2 and Lemma 3 imply G′ / G. Indeed, we notice by Lemma 3 that φ(G′) ⊆ G′ for every
automorphism of G, and so in particular this holds for every inner-automorphism. We conclude
normality by Lemma 2.

To see that G/G′ is abelian, consider the projection homomorphism π : G → G/G′. Let ḡ, h̄ ∈
G/G′ be distinct elements of the quotient group, and let g, h ∈ G be such that π(g) = ḡ, π(h) = h̄.



3Now g, h must be distinct elements since otherwise ḡ = h̄. Now [g, h] ∈ G′ so π([g, h]) = eG/G′ .
However, Lemma 3 implies that

φ([g, h]) = [g, h] = ghg−1h
−1

= eG/G′

and so we conclude that gh = hg. Since g, h were chosen arbitrarily, we conclude that all elements
of G/G′ commute and hence the quotient group is abelian.

Finally, we want to show that any homomorphism from G to an abelian group H factors through
G/G′. Let φ : G → H be such a homomorphism, and notice that G′ ⊆ kerφ. Indeed, let g ∈ G′

and write g = [g1, h1][g2, h2] · · · [gn, hn] =

n∏
i=1

[gi, hi] for gi, hi ∈ G. Now

φ(g) = φ

(
n∏
i=1

[gi, hi]

)

=

n∏
i=1

φ ([gi, hi]) since φ is a homomorphism

=

n∏
i=1

[φ(gi), φ(hi)] from Lemma 3

=

n∏
i=1

eH = eH since H is abelian

where in the last line, we note that the commutator in an abelian group is always identity. So
G′ ⊆ kerφ. By the Lattice Isomorphism theorem, we then know that G/ kerα ⊆ G/G′ and so
denote the inclusion map ι : G/ kerα ↪→ G/G′ and write

G
π
� G/G′

ι
↪→ G/ kerα

∼=−→ im(α) ↪→ H

where π : G→ G/G′ is the projection map and ∼= denotes the use of the first isomorphism theorem.
Hence φ factors through G/G′ as above.

4. Question 4

Let G be a group. An automorphism of G is an invertible group morphism G → G.
An inner automorphism is an automorphism of G given by conjugation by some specific
element gofG, so x 7→ xg. Prove that the inner automorphisms of G form a normal
subgroup of the group of all automorphisms of G.

Let φ ∈ Aut(G) and ϕg ∈ Inn(G) given by ϕg : x → gxg−1. Now we want to consider the
automorphism given by φ ◦ ϕg ◦ φ−1 and show that this is an element of Inn(G). Indeed, we claim

that φ ◦ ϕg ◦ φ−1 = ϕφ(g) where ϕφ(g)(x) = xφ(g). To see this, we note that an automorphism of G



4is determined entirely by its action on elements of G. Let h ∈ G be arbitrary, and notice that

φ ◦ ϕg ◦ φ−1(g) = φ
(
ϕg
(
φ−1(h)

))
= φ

(
gφ−1(h)g−1

) by definition of
inner automorphism

= φ(g)φ
(
φ−1(h)

)
φ(g−1)

since φ is a
homomorphism

= [φ(g)]h[φ(g)]−1

= ϕφ(g)(h).

Hence as claimed, φ ◦ ϕg ◦ φ−1 = ϕφ(g) ∈ Inn(G) so Inn(G) /Aut(G) as required.


