MAT1100

Algebra I

Assignment 1

Contents

1. Problem 11
2. Question 2 2
3. Question 3 2
4. Question 4

Tyler Holden - Fall 2011 999163934

If g is an element of a group G, the order $|g|$ of g is the least positive number n such that $g^{n}=1$. If $x, y \in G$ show that $|x y|=|y x|$.
Lemma 1. The following are some important and easily verifiable facts that we will use in our proof.
(1) If $g \in G$ not identity and $g^{n}=e$ then $|g| \mid n$.
(2) For every $g, h \in G$ we have that $\left(h^{-1} g h\right)^{n}=h^{-1} g^{n} h$.
(3) For every $g, h \in G$ we have that $|g|=\left|h^{-1} g h\right|$. That is, conjugation preserves order.

Proof. (1) Assume that $g \in G$ and that $g^{n}=e$. Since g is not identity, we know that $n>1$. Since n is an integer, we know $\exists q, r \in \mathbb{Z}$ such that $n=q|g|+r$ where $0 \leq r<|g|$. But then

$$
g^{n}=g^{|g| q+r}=\left(g^{|g|}\right)^{q} g^{r}=g^{r}=e
$$

This implies that $g^{r}=e$. However, since $|g|$ is the minimal such integer and $r<|g|$ we conclude that $r=0$. Thus $n=|g| q$, so $|g| \mid n$ as required.
(2) Let $g, h \in G$. We will proceed by induction. Clearly $\left(h^{-1} g h\right)^{1}=h^{-1} g^{1} h$ so the base case is satisfies. Assume then that $\left(h^{-1} g h\right)^{k}=h^{-1} g^{k} h$. Now

$$
\begin{array}{rlr}
\left(h^{-1} g h\right)^{k+1} & =\left(h^{-1} g h\right)^{k}\left(h^{-1} g h\right) & \\
& =\left(h^{-1} g^{k} h\right)\left(h^{-1} g h\right) & \\
& =h^{-1} g^{k} g h=h^{-1} g^{k+1} h & \text { by induction hypothesis }
\end{array}
$$

and so $\left(h^{-1} g h\right)^{k+1}=h^{-1} g^{k+1} h$ as we required and the result follows.
(3) To show that $|g|=\left|h^{-1} g h\right|$ we will show that the numbers divide one another. Indeed, note that

$$
\left(h^{-1} g h\right)^{|g|}=h^{-1} g^{|g|} h=h^{-1} h=e
$$

and so by Property 1 we know that $\left|h^{-1} g h\right|\left||g|\right.$. Conversely, we know that $\left(h^{-1} g h\right)^{\left|h^{-1} g h\right|}=$ e so

$$
\begin{array}{rlr}
\left(h^{-1} g h\right)^{\left|h^{-1} g h\right|} & =e & \\
h^{-1} g^{\left|h^{-1} g h\right|} h & =e & \text { by Property } 2 \\
g^{\left|h^{-1} g h\right|} & =h h^{-1} & \text { by multiplying by } \\
g^{\left|h^{-1} g h\right|} & =e & h \text { and } h^{-1}
\end{array}
$$

and so we conclude that $|g|\left|\left|h^{-1} g h\right|\right.$. Both divisibility criteria imply that $| g\left|=\left|h^{-1} g h\right|\right.$ as required.

Now fix $g, h \in G$, and notice that we can write $g h=g h g g^{-1}=g(h g) g^{-1}$. By Property 3 above, we know that conjugation does not affect the order of an element, hence

$$
|g h|=\left|g(h g) g^{-1}\right|=|h g|
$$

which is precisely what we wanted to show.

Let G be a group. Show that the function $\phi: G \rightarrow G, g \mapsto g^{2}$ is a group homomorphism if and only if G is abelian.
(\Rightarrow) Assume that $\phi: G \rightarrow G$ is group homomorphism and let $g, h \in G$. By definition of the mapping, we know that $\phi(g h)=(g h)^{2}=g h g h$. By assumption, ϕ is a homomorphism and so $\phi(g h)=\phi(g) \phi(h)=g^{2} h^{2}=g g h h$. Hence we have that $g h g h=g g h h$. Multiplying by g^{-1} on the left and h^{-1} on the right, we get $g h=h g$. Since g, h were chosen arbitrarily, this holds for all elements of the group, hence the group is Abelian.
(\Leftarrow) Assume that G is an abelian group. Then

$$
\begin{aligned}
\phi(g h) & =(g h)^{2} \\
& =g h g h==g g h h \\
& =g^{2} h^{2}=\phi(g) \phi(h)
\end{aligned}
$$

$$
=g h g h==g g h h \quad \text { since } G \text { is abelian }
$$

hence ϕ is a homomorphism of groups as required.

3. Question 3

Let G be a group. For $a, b \in G$, the commutator $[a, b]$ of a and b is $[a, b]=a b a^{-1} b^{-1}$. Let G^{\prime} be the subgroup of G generated by all commutators of elements of G. Show that G^{\prime} is normal in G, that G / G^{\prime} is Abelian, and that any morphism from G into an Abelian group factors through G / G^{\prime}.

We make the following claim:
Lemma 2. If G is a group and $H \leq G$, then if $\forall \phi_{g} \in \operatorname{Inn}(G)$ we have that $\phi(H) \subseteq H$ then $H \triangleleft G$.

Proof. Let G be a group and $H \leq G$ which is preserved under all inner-automorphisms. Let $g \in G, h \in H$ be arbitrary fixed elements. If we denote by $\phi_{g} \in \operatorname{Inn}(G)$ the inner automorphism $\phi_{g}(x)=g x g^{-1}$ then $g h g^{-1}=\phi_{g}(h) \in H$ by hypothesis. Hence $H \triangleleft G$ as required.

Lemma 3. If $\phi: G \rightarrow H$ is an homomorphism of G, then $\phi([g, h])=[\phi(g), \phi(h)]$ and so $\phi\left(G^{\prime}\right) \subseteq$ H^{\prime}.

Proof. Fix $g, h \in G$. Then

$$
\begin{aligned}
\phi([g, h]) & =\phi\left(g h g^{-1} h^{-1}\right)=\phi(g) \phi(h) \phi\left(g^{-1}\right) \phi\left(h^{-1}\right) \\
& =\phi(g) \phi(h) \phi(g)^{-1} \phi(h)^{-1} \\
& =[\phi(g), \phi(h)]
\end{aligned}
$$

Lemma 2 and Lemma 3 imply $G^{\prime} \triangleleft G$. Indeed, we notice by Lemma 3 that $\phi\left(G^{\prime}\right) \subseteq G^{\prime}$ for every automorphism of G, and so in particular this holds for every inner-automorphism. We conclude normality by Lemma 2 .

To see that G / G^{\prime} is abelian, consider the projection homomorphism $\pi: G \rightarrow G / G^{\prime}$. Let $\bar{g}, \bar{h} \in$ G / G^{\prime} be distinct elements of the quotient group, and let $g, h \in G$ be such that $\pi(g)=\bar{g}, \pi(h)=\bar{h}$.

Now g, h must be distinct elements since otherwise $\bar{g}=\bar{h}$. Now $[g, h] \in G^{\prime}$ so $\pi([g, h])=e_{G / G^{\prime}}{ }^{3}$. However, Lemma 3 implies that

$$
\phi([g, h])=[\bar{g}, \bar{h}]=\bar{g} \bar{h} \bar{g}^{-1} \bar{h}^{-1}=e_{G / G^{\prime}}
$$

and so we conclude that $\bar{g} \bar{h}=\bar{h} \bar{g}$. Since \bar{g}, \bar{h} were chosen arbitrarily, we conclude that all elements of G / G^{\prime} commute and hence the quotient group is abelian.

Finally, we want to show that any homomorphism from G to an abelian group H factors through G / G^{\prime}. Let $\phi: G \rightarrow H$ be such a homomorphism, and notice that $G^{\prime} \subseteq \operatorname{ker} \phi$. Indeed, let $g \in G^{\prime}$ and write $g=\left[g_{1}, h_{1}\right]\left[g_{2}, h_{2}\right] \cdots\left[g_{n}, h_{n}\right]=\prod_{i=1}^{n}\left[g_{i}, h_{i}\right]$ for $g_{i}, h_{i} \in G$. Now

$$
\begin{array}{rlr}
\phi(g) & =\phi\left(\prod_{i=1}^{n}\left[g_{i}, h_{i}\right]\right) & \\
& =\prod_{i=1}^{n} \phi\left(\left[g_{i}, h_{i}\right]\right) & \text { since } \phi \text { is a homomorphism } \\
& =\prod_{i=1}^{n}\left[\phi\left(g_{i}\right), \phi\left(h_{i}\right)\right] & \text { from Lemma } 3 \\
& =\prod_{i=1}^{n} e_{H}=e_{H} & \text { since } H \text { is abelian }
\end{array}
$$

where in the last line, we note that the commutator in an abelian group is always identity. So $G^{\prime} \subseteq \operatorname{ker} \phi$. By the Lattice Isomorphism theorem, we then know that $G / \operatorname{ker} \alpha \subseteq G / G^{\prime}$ and so denote the inclusion map $\iota: G / \operatorname{ker} \alpha \hookrightarrow G / G^{\prime}$ and write

$$
G \xrightarrow{\pi} G / G^{\prime} \stackrel{\iota}{\hookrightarrow} G / \operatorname{ker} \alpha \xrightarrow{\cong} \operatorname{im}(\alpha) \hookrightarrow H
$$

where $\pi: G \rightarrow G / G^{\prime}$ is the projection map and \cong denotes the use of the first isomorphism theorem. Hence ϕ factors through G / G^{\prime} as above.

4. Question 4

Let G be a group. An automorphism of G is an invertible group morphism $G \rightarrow G$. An inner automorphism is an automorphism of G given by conjugation by some specific element gof G, so $x \mapsto x^{g}$. Prove that the inner automorphisms of G form a normal subgroup of the group of all automorphisms of G.

Let $\phi \in \operatorname{Aut}(G)$ and $\varphi_{g} \in \operatorname{Inn}(G)$ given by $\varphi_{g}: x \rightarrow g x g^{-1}$. Now we want to consider the automorphism given by $\phi \circ \varphi_{g} \circ \phi^{-1}$ and show that this is an element of $\operatorname{Inn}(G)$. Indeed, we claim that $\phi \circ \varphi_{g} \circ \phi^{-1}=\varphi_{\phi(g)}$ where $\varphi_{\phi(g)}(x)=x^{\phi(g)}$. To see this, we note that an automorphism of G
${ }_{1}^{4}$ determined entirely by its action on elements of G. Let $h \in G$ be arbitrary, and notice that

$$
\begin{aligned}
\phi \circ \varphi_{g} \circ \phi^{-1}(g) & =\phi\left(\varphi_{g}\left(\phi^{-1}(h)\right)\right) \\
& =\phi\left(g \phi^{-1}(h) g^{-1}\right) \\
& =\phi(g) \phi\left(\phi^{-1}(h)\right) \phi\left(g^{-1}\right) \\
& =[\phi(g)] h[\phi(g)]^{-1} \\
& =\varphi_{\phi(g)}(h) .
\end{aligned}
$$

Hence as claimed, $\phi \circ \varphi_{g} \circ \phi^{-1}=\varphi_{\phi(g)} \in \operatorname{Inn}(G)$ so $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$ as required.

