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1. PROBLEM 1

If g is an element of a group G, the order |g| of ¢ is the least positive number n such
that ¢" = 1. If 2,y € G show that |zy| = |yz|.

Lemma 1. The following are some important and easily verifiable facts that we will use in our
Proof.

(1) If g € G not identity and g" = e then |g| | n.

(2) For every g,h € G we have that (h"1gh)" = h=1g"h.
(3) For every g,h € G we have that |g| = |h=tgh|. That is, conjugation preserves order.

Proof. (1) Assume that g € G and that ¢" = e. Since g is not identity, we know that n > 1.
Since n is an integer, we know g, r € Z such that n = ¢|g| + r where 0 < r < |g|. But then
g" = glgl(ﬁ-?“ _ (g\gl)qgr =g =e.
This implies that ¢" = e. However, since |g| is the minimal such integer and r < |g| we
conclude that » = 0. Thus n = |g|q, so |g| | n as required.
(2) Let g,h € G. We will proceed by induction. Clearly (h~'gh)! = h='g'h so the base case is
satisfies. Assume then that (h=1gh)* = h='g¥h. Now
(R~ gh)"*! = (h~'gh)*(h~" gh)
= (h"Y¢g*h)(h1gh) by induction hypothesis
=h"'g"gh =h71g" " h
and so (h~1gh)F*! = h=1g*+1h as we required and the result follows.
(3) To show that |g| = |h~1gh| we will show that the numbers divide one another. Indeed, note
that
(W tgh)l9l = h=lgldlp = h'h = e
and so by Property 1 we know that [h~'gh| | |g|. Conversely, we know that (h~tgh)lh™'9hl =
€ So

(h~tgh)lh oM = e
hilg‘hilgmh =e by Property 2

by multiplying by

|h=tgh| _ 13 —1
g hh h and b1

glh ol = ¢
and so we conclude that |g| | |h~gh|. Both divisibility criteria imply that |g| = |h"1gh| as

required.

0

Now fix g, h € G, and notice that we can write gh = ghgg™' = g(hg)g~'. By Property 3 above,

we know that conjugation does not affect the order of an element, hence

lgh| = |g(hg)g™"| = |hg|

which is precisely what we wanted to show.



2. QUESTION 2

Let G be a group. Show that the function ¢ : G — G, g — ¢ is a group homomorphism
if and only if G is abelian.

(=) Assume that ¢ : G — G is group homomorphism and let g,h € G. By definition of the
mapping, we know that ¢(gh) = (gh)? = ghgh. By assumption, ¢ is a homomorphism and so
#(gh) = ¢(g)p(h) = g*h? = gghh. Hence we have that ghgh = gghh. Multiplying by g~! on the
left and A~' on the right, we get gh = hg. Since g, h were chosen arbitrarily, this holds for all
elements of the group, hence the group is Abelian.

(<) Assume that G is an abelian group. Then
¢(gh) = (gh)”
= ghgh == gghh since G is abelian
= g°h* = ¢(g)p(h)

hence ¢ is a homomorphism of groups as required.

3. QUESTION 3

Let G be a group. For a,b € G, the commutator [a,b] of ¢ and b is [a,b] = aba~'b~L.
Let G’ be the subgroup of G generated by all commutators of elements of G. Show
that G’ is normal in G, that G/G’ is Abelian, and that any morphism from G into an
Abelian group factors through G/G’.

We make the following claim:

Lemma 2. If G is a group and H < G, then if V¢, € Inn(G) we have that ¢(H) C H then H<G.

Proof. Let G be a group and H < G which is preserved under all inner-automorphisms. Let
g € G,h € H be arbitrary fixed elements. If we denote by ¢, € Inn(G) the inner automorphism
¢g(z) = grg~! then ghg™! = ¢4(h) € H by hypothesis. Hence H <G as required. O

Lemma 3. If ¢ : G — H is an homomorphism of G, then ¢([g,h]) = [¢(g), d(h)] and so ¢(G') C
H'.
Proof. Fix g,h € G. Then

o(lg,h]) = ¢

O

Lemma 2 and Lemma 3 imply G’ < G. Indeed, we notice by Lemma 3 that ¢(G’) C G’ for every
automorphism of GG, and so in particular this holds for every inner-automorphism. We conclude
normality by Lemma 2.

To see that G/G’ is abelian, consider the projection homomorphism 7 : G — G/G’. Let g, h €
G /G’ be distinct elements of the quotient group, and let g, h € G be such that 7(g) = g, m(h) = h.



Now g, h must be distinct elements since otherwise g = h. Now [g,h] € G’ so 7([g,h]) = eg/G/?.’
However, Lemma 3 implies that

é(lg,h]) = [g,h] = ghg 'R = e

and so we conclude that gh = hg. Since g, h were chosen arbitrarily, we conclude that all elements
of G/G’ commute and hence the quotient group is abelian.

Finally, we want to show that any homomorphism from G to an abelian group H factors through
G/G'. Let ¢ : G — H be such a homomorphism, and notice that G’ C ker ¢. Indeed, let g € G’
n

and write g = [g1, h1][g2, h2] - - - [gn, Pn] = H[gi,h,-] for g;, h; € G. Now
i=1

o(9) = ¢ (ﬁl[gi, hi])
= ﬁ o ([gi, hi]) since ¢ is a homomorphism
i=1
— ﬁ[¢(gi)? o(hy)] from Lemma 3
i=1
= ﬁ eg = eq since H is abelian

where in the last line, we note that the commutator in an abelian group is always identity. So
G’ C ker ¢. By the Lattice Isomorphism theorem, we then know that G/kera C G/G’ and so
denote the inclusion map ¢ : G/ ker @ — G /G’ and write

G5 G/G S Glkera S im(a) — H

where 7 : G — G/G’ is the projection map and = denotes the use of the first isomorphism theorem.
Hence ¢ factors through G/G’ as above.

4. QUESTION 4

Let G be a group. An automorphism of G is an invertible group morphism G — G.
An inner automorphism is an automorphism of G given by conjugation by some specific
element gofG, so z — z9. Prove that the inner automorphisms of G form a normal
subgroup of the group of all automorphisms of G.

Let ¢ € Aut(G) and ¢, € Inn(G) given by ¢, : © — grg~'. Now we want to consider the
automorphism given by ¢ o ¢, 0 ¢~ and show that this is an element of Inn(G). Indeed, we claim
that ¢ o ¢4 o ot = Pe(g) Where py(g) (z) = %9 . To see this, we note that an automorphism of G



fs determined entirely by its action on elements of G. Let h € G be arbitrary, and notice that

popgod ' (9) =0 (pg(¢7"(R)))
by definition of

=¢(g ¢~ (h)g 71) inner automorphism
= 0(9)6 (67 (1) (g™ homomorphion
= [¢(9)]h[o(9)]

= Pa(g) (h)-

Hence as claimed, ¢ o g0 ¢~ = @44 € Inn(G) so Inn(G) < Aut(G) as required.



